Jin-Feng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1178925/publications.pdf Version: 2024-02-01

LIN-FENCL

#	Article	IF	CITATIONS
1	Information encryption, highly sensitive detection of nitrobenzene, tetracycline based on a stable luminescent Cd-MOF. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120752.	3.9	11
2	The coexistence of long <i>Ï,,</i> _{QTM} and high <i>U</i> _{eff} as a concise criterion for a good single-molecule magnet: a theoretical case study of square antiprism dysprosium single-ion magnets. Physical Chemistry Chemical Physics, 2022, 24, 11729-11742.	2.8	15
3	Assessment of XC functionals for the study of organic molecules with superhalogen substitution. A systematic comparison between DFT and CCSD(T). Journal of Chemical Physics, 2022, 156, 184303.	3.0	4
4	Exploring the Superhalogen Properties of Polynuclear Structures without Halogen Ligands: A Combined <i>Ab Initio</i> and DFT Study on Triple-Bridged [Mg ₂ L ₅] ^{â^'1} (L = â^'OCN, â^'SCN) Anions. Journal of Physical Chemistry A. 2021, 125, 3378-3386.	2.5	6
5	Exploring the structure, bonding and stability of noble gas compounds promoted by superhalogens. A case study on HNgMX ₃ (Ng = Ar–Rn, M = Be–Ca, X = F–Br) <i>via</i> combined high-level <i>ab initio</i> and DFT calculations. Physical Chemistry Chemical Physics, 2019, 21, 19104-19114.	2.8	11
6	Constructing organic superacids from superhalogens is a rational route as verified by DFT calculations. Physical Chemistry Chemical Physics, 2019, 21, 2804-2815.	2.8	15
7	Exploring the necessity of an acidic additive for Pd(<scp>ii</scp>)-catalyzed exclusive C4-fluoroalkylation of 3-acetylindole: a detailed DFT study on the mechanism and regioselectivity. Organic Chemistry Frontiers, 2019, 6, 2607-2618.	4.5	14
8	Combining proton and silaborane-based superhalogen anions – an effective route to new superacids as verified <i>via</i> systematic DFT calculations. Dalton Transactions, 2019, 48, 16184-16198.	3.3	9
9	Superhalogen-based composite with strong acidity-a crossing point between two topics. Inorganic Chemistry Frontiers, 2018, 5, 2934-2947.	6.0	17
10	Why do higher VDEs of superhalogen not ensure improved stabilities of the noble gas hydrides promoted by them? A high-level ab initio case study. Journal of Chemical Physics, 2018, 149, 064301.	3.0	9
11	Could the increased structural versatility imposed by non-halogen ligands bring something new for polynuclear superhalogens? A case study on binuclear [Mg ₂ L ₅] ^{â^^} (L = –OH, –OOH and –OF) anions. Physical Chemistry Chemical Physics, 2017, 19, 26986-26995.	2.8	17
12	The Combination of Superhalogens and BrÃ,nsted Acids HX (X = F, Cl, Br): An Effective Strategy for Designing Strong Superacids. Inorganic Chemistry, 2017, 56, 11787-11797.	4.0	25
13	Could the description on polynuclear superhalogens by DFT be comparable with high-level <i>ab initio</i> results? A comparison between DFT and CCSD(T). Journal of Chemical Physics, 2016, 144, 054303.	3.0	19
14	Probing the potential of halogen-free superhalogen anions as effective electrolytes of Li-ion batteries: a theoretical prospect from combined ab initio and DFT studies. Physical Chemistry Chemical Physics, 2016, 18, 28576-28584.	2.8	25
15	Probing the Properties of Polynuclear Superhalogens without Halogen Ligand via ab Initio Calculations: A Case Study on Doubleâ€Bridged [Mg ₂ (CN) ₅] ^{â^'1} Anions. ChemPhysChem, 2015, 16, 3652-3659.	2.1	26
16	Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand. AIP Advances, 2015, 5, 067143.	1.3	32
17	Is the regulation of the electronic properties of organic molecules by polynuclear superhalogens more effective than that by mononuclear superhalogens? A high-level ab initio case study. Physical Chemistry Chemical Physics, 2015, 17, 20338-20346.	2.8	13
18	Are polynuclear superhalogens without halogen atoms probable? A high-level <i>ab initio</i> case study on triple-bridged binuclear anions with cyanide ligands. Journal of Chemical Physics, 2014, 140, 094301.	3.0	39