Jin-Feng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1178925/publications.pdf

Version: 2024-02-01

		840776	888059
18	307	11	17
papers	citations	h-index	g-index
1.0	1.0	1.0	100
18	18	18	123
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Are polynuclear superhalogens without halogen atoms probable? A high-level <i>ab initio</i> case study on triple-bridged binuclear anions with cyanide ligands. Journal of Chemical Physics, 2014, 140, 094301.	3.0	39
2	Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand. AIP Advances, 2015, 5, 067143.	1.3	32
3	Probing the Properties of Polynuclear Superhalogens without Halogen Ligand via ab Initio Calculations: A Case Study on Doubleâ€Bridged [Mg ₂ (CN) ₅] ^{â^'1} Anions. ChemPhysChem, 2015, 16, 3652-3659.	2.1	26
4	Probing the potential of halogen-free superhalogen anions as effective electrolytes of Li-ion batteries: a theoretical prospect from combined ab initio and DFT studies. Physical Chemistry Chemical Physics, 2016, 18, 28576-28584.	2.8	25
5	The Combination of Superhalogens and $Br\tilde{A}_{s}$ nsted Acids HX (X = F, Cl, Br): An Effective Strategy for Designing Strong Superacids. Inorganic Chemistry, 2017, 56, 11787-11797.	4.0	25
6	Could the description on polynuclear superhalogens by DFT be comparable with high-level <i>ab initio</i> results? A comparison between DFT and CCSD(T). Journal of Chemical Physics, 2016, 144, 054303.	3.0	19
7	Could the increased structural versatility imposed by non-halogen ligands bring something new for polynuclear superhalogens? A case study on binuclear [Mg ₂ L ₅] ^ⰲ (L = –OH, –OOH and –OF) anions. Physical Chemistry Chemical Physics, 2017, 19, 26986-26995.	2.8	17
8	Superhalogen-based composite with strong acidity-a crossing point between two topics. Inorganic Chemistry Frontiers, 2018, 5, 2934-2947.	6.0	17
9	Constructing organic superacids from superhalogens is a rational route as verified by DFT calculations. Physical Chemistry Chemical Physics, 2019, 21, 2804-2815.	2.8	15
10	The coexistence of long (i>Ï,, (i> (sub)QTM (sub) and high (i> U (i) (sub) eff (sub) as a concise criterion for a good single-molecule magnet: a theoretical case study of square antiprism dysprosium single-ion magnets. Physical Chemistry Chemical Physics, 2022, 24, 11729-11742.	2.8	15
11	Exploring the necessity of an acidic additive for $Pd(\langle scp \rangle ii \langle scp \rangle)$ -catalyzed exclusive C4-fluoroalkylation of 3-acetylindole: a detailed DFT study on the mechanism and regioselectivity. Organic Chemistry Frontiers, 2019, 6, 2607-2618.	4.5	14
12	Is the regulation of the electronic properties of organic molecules by polynuclear superhalogens more effective than that by mononuclear superhalogens? A high-level ab initio case study. Physical Chemistry Chemical Physics, 2015, 17, 20338-20346.	2.8	13
13	Exploring the structure, bonding and stability of noble gas compounds promoted by superhalogens. A case study on HNgMX ₃ (Ng = Arâ€"Rn, M = Beâ€"Ca, X = Fâ€"Br) <i>via</i> combined high-level <i>ab initio</i> and DFT calculations. Physical Chemistry Chemical Physics, 2019, 21, 19104-19114.	2.8	11
14	Information encryption, highly sensitive detection of nitrobenzene, tetracycline based on a stable luminescent Cd-MOF. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120752.	3.9	11
15	Why do higher VDEs of superhalogen not ensure improved stabilities of the noble gas hydrides promoted by them? A high-level ab initio case study. Journal of Chemical Physics, 2018, 149, 064301.	3.0	9
16	Combining proton and silaborane-based superhalogen anions – an effective route to new superacids as verified <i>via</i> systematic DFT calculations. Dalton Transactions, 2019, 48, 16184-16198.	3.3	9
17	Exploring the Superhalogen Properties of Polynuclear Structures without Halogen Ligands: A Combined <i>Ab Initio</i> and DFT Study on Triple-Bridged [Mg ₂ L ₅] ^{â^'1} (L = â^'OCN, â^'SCN) Anions. Journal of Physical Chemistry A. 2021, 125, 3378-3386.	2.5	6
18	Assessment of XC functionals for the study of organic molecules with superhalogen substitution. A systematic comparison between DFT and CCSD(T). Journal of Chemical Physics, 2022, 156, 184303.	3.0	4