Neill J Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials, 2012, 33, 1771-1781.	5.7	499
2	An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss. Science Translational Medicine, 2014, 6, 234ra58.	5.8	384
3	Matrix-bound nanovesicles within ECM bioscaffolds. Science Advances, 2016, 2, e1600502.	4.7	263
4	Functional skeletal muscle formation with a biologic scaffold. Biomaterials, 2010, 31, 7475-7484.	5.7	242
5	Regeneration of skeletal muscle. Cell and Tissue Research, 2012, 347, 759-774.	1.5	226
6	The impact of detergents on the tissue decellularization process: A ToF-SIMS study. Acta Biomaterialia, 2017, 50, 207-219.	4.1	187
7	Xenogeneic Extracellular Matrix as an Inductive Scaffold for Regeneration of a Functioning Musculotendinous Junction. Tissue Engineering - Part A, 2010, 16, 3309-3317.	1.6	162
8	An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. Npj Regenerative Medicine, 2016, 1, 16008.	2.5	154
9	A Murine Model of Volumetric Muscle Loss and a Regenerative Medicine Approach for Tissue Replacement. Tissue Engineering - Part A, 2012, 18, 1941-1948.	1.6	135
10	The Use of Biologic Scaffolds in the Treatment of Chronic Nonhealing Wounds. Advances in Wound Care, 2015, 4, 490-500.	2.6	127
11	A novel hyaluronan-based biomaterial (Hyaff-11®) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials, 2004, 25, 5955-5964.	5.7	114
12	Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials, 2016, 89, 114-126.	5.7	111
13	The effect of source animal age upon the inÂvivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials, 2012, 33, 5524-5533.	5.7	109
14	Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide. Acta Biomaterialia, 2017, 53, 268-278.	4.1	106
15	Biologic Scaffold Remodeling in a Dog Model of Complex Musculoskeletal Injury. Journal of Surgical Research, 2012, 176, 490-502.	0.8	104
16	Snapshot: Biologic Scaffolds For Constructive Tissue Remodeling. Biomaterials, 2011, 32, 316-319.	5.7	69
17	The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovascular Pathology, 2008, 17, 98-102.	0.7	67
18	Quantitative multispectral imaging of Herovici's polychrome for the assessment of collagen content and tissue remodelling. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 139-148.	1.3	57

Neill J Turner

#	Article	IF	CITATIONS
19	The effect of cell debris within biologic scaffolds upon the macrophage response. Journal of Biomedical Materials Research - Part A, 2017, 105, 2109-2118.	2.1	55
20	Biologic scaffolds for musculotendinous tissue repair. , 2013, 25, 130-143.		55
21	Restoring Mucosal Barrier Function and Modifying Macrophage Phenotype with an Extracellular Matrix Hydrogel: Potential Therapy for Ulcerative Colitis. Journal of Crohn's and Colitis, 2017, 11, jjw149.	0.6	53
22	The role of transforming growth factor β1 in the vascular system. Cardiovascular Pathology, 2005, 14, 28-36.	0.7	50
23	The Natural History of Stenoses within Lower Limb Arterial Bypass Grafts Using a Graft Surveillance Program. Annals of Vascular Surgery, 2007, 21, 695-703.	0.4	47
24	Cyclic stretch-induced TGFβ1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochemical and Biophysical Research Communications, 2008, 377, 1147-1151.	1.0	44
25	Regional Variations in the Histology of Porcine Skin. Tissue Engineering - Part C: Methods, 2015, 21, 373-384.	1.1	38
26	Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect. Biomaterials, 2016, 108, 81-90.	5.7	32
27	Upper dorsal endoscopic thoracic sympathectomy: a comparison of one- and two-port ablation techniques. European Journal of Cardio-thoracic Surgery, 2006, 30, 223-227.	0.6	29
28	Bone marrow–derived cells participate in the long-term remodeling in a mouse model of esophageal reconstruction. Journal of Surgical Research, 2013, 182, e1-e7.	0.8	29
29	α2(VIII) Collagen Substrata Enhance Endothelial Cell Retention Under Acute Shear Stress Flow via an α2β1Integrin–Dependent Mechanism. Circulation, 2006, 114, 820-829.	1.6	27
30	An in vitro model to evaluate cell adhesion to metals used in implantation shows significant differences between palladium and gold or platinum. Cell Biology International, 2004, 28, 541-547.	1.4	26
31	A histomorphologic study of the normal healing response following digit amputation in C57bl/6 and MRL/MpJ mice. Archives of Histology and Cytology, 2010, 73, 103-111.	0.2	19
32	Capability of human umbilical cord blood progenitor-derived endothelial cells to form an efficient lining on a polyester vascular graft in vitro. Acta Biomaterialia, 2009, 5, 1147-1157.	4.1	18
33	Reduction of myointimal hyperplasia after arterial anastomosis by local injection of transforming growth factor l²3. Journal of Vascular Surgery, 2006, 43, 142-149.	0.6	16
34	Matrix-Bound Nanovesicles: The Effects of Isolation Method upon Yield, Purity, and Function. Tissue Engineering - Part C: Methods, 2020, 26, 528-540.	1.1	16
35	Intimal Neovascularisation is a Prominent Feature of Atherosclerotic Plaques in Diabetic Patients with Critical Limb Ischaemia. European Journal of Vascular and Endovascular Surgery, 2007, 33, 319-324.	0.8	14
36	Expression of Growth Factors and Growth Factor Receptor in Non-healing and Healing Ischaemic Ulceration. European Journal of Vascular and Endovascular Surgery, 2006, 31, 516-522.	0.8	13

Neill J Turner

#	Article	IF	CITATIONS
37	An In Vivo Model System for Evaluation of the Host Response to Biomaterials. Methods in Molecular Biology, 2013, 1037, 3-25.	0.4	13
38	Lessons from developmental biology for regenerative medicine. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 149-159.	3.6	11
39	The impact of sterilization upon extracellular matrix hydrogel structure and function. Journal of Immunology and Regenerative Medicine, 2018, 2, 11-20.	0.2	11
40	The Antimicrobial Effectiveness and Cytotoxicity of the Antibiotic-Loaded Chitosan: ECM Scaffolds. Applied Sciences (Switzerland), 2020, 10, 3446.	1.3	11
41	4-Hydroxybutyrate Promotes Endogenous Antimicrobial Peptide Expression in Macrophages. Tissue Engineering - Part A, 2019, 25, 693-706.	1.6	10
42	Sutureless nerve repair with ECM bioscaffolds and laserâ€activated chitosan adhesive. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1698-1711.	1.6	9
43	Extracellular matrix proteins as temporary coating for thin-film neural implants. Journal of Neural Engineering, 2017, 14, 014001.	1.8	8
44	Human NELL1 Protein Augments Constructive Tissue Remodeling with Biologic Scaffolds. Cells Tissues Organs, 2013, 198, 249-265.	1.3	6
45	Extracellular Matrix Degradation Products Downregulate Neoplastic Esophageal Cell Phenotype. Tissue Engineering - Part A, 2019, 25, 487-498.	1.6	6
46	A panel data set on harvest and perfusion decellularization of porcine rectus abdominis. Data in Brief, 2016, 7, 1375-1382.	0.5	5
47	In Vivo Attenuation of Myointimal Hyperplasia Using Transforming Growth Factor-Beta3 in an Interposition Graft Model. Journal of Endovascular Therapy, 2006, 13, 389-399.	0.8	4
48	Bioscaffold-mediated mucosal remodeling following short-segment colonic mucosal resection. Journal of Surgical Research, 2017, 218, 353-360.	0.8	3
49	Engineered tissues for wound repair. , 2011, , 463-494.		2