List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11788924/publications.pdf Version: 2024-02-01

IAF EDMONDS

#	Article	IF	CITATIONS
1	The representative concentration pathways: an overview. Climatic Change, 2011, 109, 5-31.	1.7	5,871
2	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	3.6	2,966
3	Net-zero emissions energy systems. Science, 2018, 360, .	6.0	1,165
4	Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6, 42-50.	8.1	973
5	Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 2018, 8, 325-332.	8.1	795
6	A new scenario framework for Climate Change Research: scenario matrix architecture. Climatic Change, 2014, 122, 373-386.	1.7	510
7	International climate policy architectures: Overview of the EMF 22 International Scenarios. Energy Economics, 2009, 31, S64-S81.	5.6	397
8	The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 2014, 123, 353-367.	1.7	348
9	International Equity and Differentiation in Global Warming Policy. Environmental and Resource Economics, 1998, 12, 25-51.	1.5	322
10	Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 2015, 90, 8-23.	6.2	270
11	A new scenario framework for climate change research: the concept of shared climate policy assumptions. Climatic Change, 2014, 122, 401-414.	1.7	266
12	Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Communications, 2020, 11, 2096.	5.8	241
13	A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 2012, 22, 21-35.	3.6	228
14	GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development, 2019, 12, 677-698.	1.3	211
15	Limited impact on decadal-scale climate change from increased use of natural gas. Nature, 2014, 514, 482-485.	13.7	194
16	The Costs of Limiting Fossil-Fuel CO2 Emissions: A Survey and Analysis. Annual Review of Environment and Resources, 1993, 18, 397-478.	1.2	175
17	Evaluating the economic impact of water scarcity in a changing world. Nature Communications, 2021, 12, 1915.	5.8	174
18	A new scenario framework for climate change research: background, process, and future directions. Climatic Change, 2014, 122, 363-372.	1.7	169

#	Article	IF	CITATIONS
19	A long-term global energy- economic model of carbon dioxide release from fossil fuel use. Energy Economics, 1983, 5, 74-88.	5.6	141
20	Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 2017, 141, 2081-2090.	4.5	108
21	Trade-offs of different land and bioenergy policies on the path to achieving climate targets. Climatic Change, 2014, 123, 691-704.	1.7	98
22	The ObjECTS Framework for Integrated Assessment: Hybrid Modeling of Transportation. Energy Journal, 2006, 27, 63-91.	0.9	98
23	Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environmental Research Letters, 2016, 11, 095004.	2.2	97
24	Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies. Energy Economics, 2004, 26, 517-537.	5.6	88
25	ECONOMIC AND PHYSICAL MODELING OF LAND USE IN GCAM 3.0 AND AN APPLICATION TO AGRICULTURAL PRODUCTIVITY, LAND, AND TERRESTRIAL CARBON. Climate Change Economics, 2014, 05, 1450003.	2.9	80
26	Balancing global water availability and use at basin scale in an integrated assessment model. Climatic Change, 2016, 136, 217-231.	1.7	79
27	Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures. Nature Communications, 2021, 12, 6245.	5.8	78
28	Carbon coalitions. Energy Policy, 1995, 23, 309-335.	4.2	74
29	Negative emissions and international climate goals—learning from and about mitigation scenarios. Climatic Change, 2019, 157, 189-219.	1.7	74
30	Carbon capture and storage across fuels and sectors in energy system transformation pathways. International Journal of Greenhouse Gas Control, 2017, 57, 34-41.	2.3	68
31	An integrated assessment of climate change and the accelerated introduction of advanced energy technologies. Mitigation and Adaptation Strategies for Global Change, 1997, 1, 311-339.	1.0	67
32	The impact of near-term climate policy choices on technology and emission transition pathways. Technological Forecasting and Social Change, 2015, 90, 73-88.	6.2	64
33	Assessing global fossil fuel availability in a scenario framework. Energy, 2016, 111, 580-592.	4.5	54
34	Electrification of the economy and CO2 emissions mitigation. Environmental Economics and Policy Studies, 2006, 7, 175-203.	0.8	46
35	Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nature Climate Change, 2017, 7, 496-500.	8.1	46
36	The distribution and magnitude of emissions mitigation costs in climate stabilization under less than perfect international cooperation: SGM results. Energy Economics, 2009, 31, S187-S197.	5.6	40

#	Article	lF	CITATIONS
37	Implications of simultaneously mitigating and adapting to climate change: initial experiments using GCAM. Climatic Change, 2013, 117, 545-560.	1.7	36
38	Global energy production and use to the year 2050. Energy, 1983, 8, 419-432.	4.5	34
39	Cost of power or power of cost: A U.S. modeling perspective. Renewable and Sustainable Energy Reviews, 2017, 77, 861-874.	8.2	34
40	Uncertainty in integrated assessment models: modeling with MiniCAM 1.0. Energy Policy, 1999, 27, 855-879.	4.2	31
41	The role of carbon dioxide removal in net-zero emissions pledges. Energy and Climate Change, 2021, 2, 100043.	2.2	28
42	An Integrated Assessment of Climate Change and the Accelerated Introduction of Advanced Energy Technologies - An Application of MiniCAM 1.0. Mitigation and Adaptation Strategies for Global Change, 1995, 1, 311-339.	1.0	27
43	Mitigation scenarios must cater to new users. Nature Climate Change, 2018, 8, 845-848.	8.1	27
44	Will economic growth and fossil fuel scarcity help or hinder climate stabilization?. Climatic Change, 2016, 136, 7-22.	1.7	25
45	Sensitivity of multi-gas climate policy to emission metrics. Climatic Change, 2013, 117, 663-675.	1.7	24
46	Integrated energy-water-land nexus planning to guide national policy: an example from Uruguay. Environmental Research Letters, 2020, 15, 094014.	2.2	24
47	Climate and carbon budget implications of linked future changes in CO ₂ and non-CO ₂ forcing. Environmental Research Letters, 2019, 14, 044007.	2.2	23
48	What do near-term observations tell us about long-term developments in greenhouse gas emissions?. Climatic Change, 2010, 103, 635-642.	1.7	20
49	IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022?. Global Environmental Change, 2022, 75, 102538.	3.6	20
50	Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection. Climatic Change, 2016, 136, 1-6.	1.7	19
51	Exploring a technology strategy for stabilizing atmospheric CO2. , 1999, , 131-154.		17
52	The Berlin Mandate: The Design of Cost-Effective Mitigation Strategies. Profiles in Operations Research, 1999, , 67-83.	0.3	16
53	EU 20-20-20 energy policy as a model for global climate mitigation. Climate Policy, 2014, 14, 581-598.	2.6	14
54	Implications of uncertain future fossil energy resources on bioenergy use and terrestrial carbon emissions. Climatic Change, 2016, 136, 57-68.	1.7	14

#	Article	IF	CITATIONS
55	CLIMATE: A New Route Toward Limiting Climate Change?. Science, 2000, 290, 1109-1110.	6.0	13
56	Exploring the future role of Asia utilizing a Scenario Matrix Architecture and Shared Socio-economic Pathways. Energy Economics, 2012, 34, S325-S338.	5.6	12
57	GLOBAL MARKET AND ECONOMIC WELFARE IMPLICATIONS OF CHANGES IN AGRICULTURAL YIELDS DUE TO CLIMATE CHANGE. Climate Change Economics, 2020, 11, 2050005.	2.9	12
58	A short note on integrated assessment modeling approaches: Rejoinder to the review of "Making or breaking climate targets — The AMPERE study on staged accession scenarios for climate policy― Technological Forecasting and Social Change, 2015, 99, 273-276.	6.2	11
59	Solar energy technologies and stabilizing atmospheric CO2 concentrations. Progress in Photovoltaics: Research and Applications, 2000, 8, 3-15.	4.4	10
60	A review of water and greenhouse gas impacts of unconventional natural gas development in the United States. MRS Energy & Sustainability, 2015, 2, 1.	1.3	8
61	Data on fossil fuel availability for Shared Socioeconomic Pathways. Data in Brief, 2017, 10, 44-46.	0.5	7
62	Fossil energy deployment through midcentury consistent with 2°C climate stabilization. Energy and Climate Change, 2021, 2, 100034.	2.2	7
63	Global climate, energy, and economic implications of international energy offsets programs. Climatic Change, 2015, 133, 583-596.	1.7	6
64	Implications for the USA of stabilization of radiative forcing at 3.4 W/m ² . Climate Policy, 2008, 8, S76-S92.	2.6	3
65	The value of advanced energy technologies in stabilizing atmospheric CO2. , 1998, , 87-104.		2
66	Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing. , 2013, , 81-138.		0