Miklos Czaun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11788631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recycling of carbon dioxide to methanol and derived products – closing the loop. Chemical Society Reviews, 2014, 43, 7995-8048.	38.1	1,125
2	Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy and Environmental Science, 2012, 5, 7833.	30.8	549
3	Conversion of CO ₂ from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst. Journal of the American Chemical Society, 2016, 138, 778-781.	13.7	458
4	Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent. Journal of the American Chemical Society, 2011, 133, 20164-20167.	13.7	428
5	Bi-reforming of Methane from Any Source with Steam and Carbon Dioxide Exclusively to Metgas (CO–2H ₂) for Methanol and Hydrocarbon Synthesis. Journal of the American Chemical Society, 2013, 135, 648-650.	13.7	237
6	Easily Regenerable Solid Adsorbents Based on Polyamines for Carbon Dioxide Capture from the Air. ChemSusChem, 2014, 7, 1386-1397.	6.8	133
7	CO ₂ capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts. Green Chemistry, 2016, 18, 5831-5838.	9.0	132
8	Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H ₂) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen. Journal of the American Chemical Society, 2015, 137, 8720-8729.	13.7	128
9	Amineâ€Free Reversible Hydrogen Storage in Formate Salts Catalyzed by Ruthenium Pincer Complex without pH Control or Solvent Change. ChemSusChem, 2015, 8, 1442-1451.	6.8	107
10	Hydrogen Generation from Formic Acid Decomposition by Ruthenium Carbonyl Complexes. Tetraruthenium Dodecacarbonyl Tetrahydride as an Active Intermediate. ChemSusChem, 2011, 4, 1241-1248.	6.8	83
11	Iridium-Catalyzed Continuous Hydrogen Generation from Formic Acid and Its Subsequent Utilization in a Fuel Cell: Toward a Carbon Neutral Chemical Energy Storage. ACS Catalysis, 2016, 6, 7475-7484.	11.2	75
12	Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions. ACS Catalysis, 2014, 4, 311-320.	11.2	72
13	CO ₂ capture on easily regenerable hybrid adsorbents based on polyamines and mesocellular silica foam. Effect of pore volume of the support and polyamine molecular weight. RSC Advances, 2014, 4, 19403-19417.	3.6	62
14	A novel approach to magneto-responsive polymeric gels assisted by iron nanoparticles as nano cross-linkers. Chemical Communications, 2008, , 2124.	4.1	54
15	Synthesis, Selfâ€Assembling Properties, and Atom Transfer Radical Polymerization of an Alkylated <scp>L</scp> â€Phenylalanineâ€Derived Monomeric Organogel from Silica: A New Approach To Prepare Packing Materials for Highâ€Performance Liquid Chromatography. Chemistry - A European Journal, 2008, 14, 1312-1321	3.3	53
16	Self-Sufficient and Exclusive Oxygenation of Methane and Its Source Materials with Oxygen to Methanol via Metgas Using Oxidative Bi-reforming. Journal of the American Chemical Society, 2013, 135, 10030-10031.	13.7	43
17	Organoamines-grafted on nano-sized silica for carbon dioxide capture. Journal of CO2 Utilization, 2013, 1, 1-7.	6.8	36
18	A New Route for Preparation of High-density Organic Phase to High Selective HPLC for Polycyclic Aromatic Hydrocarbons by Atom-transfer Radical Polymerization of Octadecyl Acrylate on Silica. Chemistry Letters, 2007, 36, 1460-1461.	1.3	15

MIKLOS CZAUN

#	Article	IF	CITATIONS
19	Molecular shape recognition-structure correlation in a phenylalanine-based polymer–silica composite by surface-initiated atom transfer radical polymerization. Polymer, 2008, 49, 5410-5416.	3.8	15
20	The base-catalyzed oxygenation of quinoline derivatives. Tetrahedron Letters, 2002, 43, 5961-5963.	1.4	13
21	Novel Surface-Attachable Multifunctional Initiators: Synthesis, Grafting, and Polymerization in Aprotic and Protic Solvents. Macromolecules, 2009, 42, 4539-4546.	4.8	9
22	Facile copper-mediated activation of the N–H bond and the oxidative cleavage of the C2–C3 bond in 1H-2-phenyl-3-hydroxy-4-oxoquinoline. Chemical Communications, 2004, , 1004-1005.	4.1	8
23	Kinetics and mechanism of the base-catalyzed oxygenation ofÂ1H-2-phenyl-3-hydroxy-4-oxoquinolines in DMSO/H2O. Tetrahedron, 2013, 69, 6666-6672.	1.9	7
24	Magneto-Responsive Organogels Prepared Through Surface-Initiated Atom Transfer Radical Polymerization on Iron Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 123-131.	0.9	6
25	Copper-catalyzed oxygenation of 3-hydroxy-2-phenylquinolin-4(1H)-one: Synthesis, structure and spectral properties of [Cu(idpa)(N-baa)]ClO4, [idpa=3,3′-iminobis(N,N-dimethylpropylamine), N-baaH=N-benzoylanthranilic acid]. Inorganic Chemistry Communication, 2005, 8, 813-816.	3.9	3
26	Kinetics and mechanism of the oxygenation of potassium nitronates. Evidence for a single electron transfer (SET) mechanism ÂÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 193-202.	0.6	3