
## **B A Timerkaev**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11788421/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Germanium Catalyst for Plasma-Chemical Synthesis of Diamonds. High Energy Chemistry, 2019, 53, 390-395.                                                                                             | 0.9 | 27        |
| 2  | Features of Transient Processes in DC Microdischarges in Molecular Gases: From a Glow Discharge to an Arc Discharge with a Unfree or Free Cathode Regime. JETP Letters, 2020, 112, 405-412.         | 1.4 | 24        |
| 3  | Plasma-Chemical Decomposition of Hydrocarbons on the Basis of the Micro-Arc Discharge with Disc<br>Electrodes Rotating in the Bulk of Raw Materials. Russian Physics Journal, 2020, 62, 2132-2136.  | 0.4 | 22        |
| 4  | Control of the glow discharge parameters at low pressures by means of a transverse supersonic gas flow. High Temperature, 2016, 54, 632-638.                                                        | 1.0 | 21        |
| 5  | Numerical Study of the Voltage Waveform Effect on the Spatiotemporal Characteristics of a<br>Dielectric Barrier Microdischarge in Argon. Plasma Physics Reports, 2018, 44, 359-368.                 | 0.9 | 20        |
| 6  | Numerical Simulation of Temperature Fields in a Direct-Current Plasma Torch. Technical Physics<br>Letters, 2018, 44, 164-166.                                                                       | 0.7 | 20        |
| 7  | Drift model of a glow discharge with account for the nonlocal value of the electric field strength in the ionization source. Journal of Engineering Physics and Thermophysics, 2012, 85, 1202-1207. | 0.6 | 18        |
| 8  | Creation of Silicon Nanostructures in Electric Arc Discharge. High Energy Chemistry, 2019, 53, 162-166.                                                                                             | 0.9 | 17        |
| 9  | Synthesizing Germanium Nanotubes in an Electric Arc Plasma. Russian Journal of Physical Chemistry A,<br>2020, 94, 613-617.                                                                          | 0.6 | 17        |
| 10 | Glow discharge in a transverse supersonic gas flow at low pressures. High Temperature, 2014, 52,<br>471-474.                                                                                        | 1.0 | 16        |
| 11 | Electric Microdischarges in Liquids and Prospects of Their Use in Plasma Chemistry. Journal of<br>Engineering Physics and Thermophysics, 2014, 87, 699-703.                                         | 0.6 | 16        |
| 12 | Growing of Carbon Nanotubes from Hydrocarbons in an Arc Plasma. Journal of Engineering Physics and Thermophysics, 2019, 92, 1248-1252.                                                              | 0.6 | 16        |
| 13 | Control of glow discharge parameters using transverse supersonic gas flow - numerical experiment.<br>Journal of Physics: Conference Series, 2014, 567, 012031.                                      | 0.4 | 14        |
| 14 | Carbon nanotubes formation in the decomposition of heavy hydrocarbons creeping along the surface of the glow discharge. Journal of Physics: Conference Series, 2016, 669, 012062.                   | 0.4 | 13        |
| 15 | Discharge creeping along the surface in the process for producing nanomaterials. Journal of Physics:<br>Conference Series, 2017, 927, 012068.                                                       | 0.4 | 12        |
| 16 | Plasma-induced decomposition of heavy hydrocarbons. Petroleum Chemistry, 2016, 56, 869-872.                                                                                                         | 1.4 | 8         |
| 17 | Study of a DC gas discharge with a copper cathode in a water flow. Plasma Physics Reports, 2017, 43, 771-777.                                                                                       | 0.9 | 8         |
| 18 | Simulation of the Carbon Synthesis Process in Atmospheric-Pressure Microwave Discharge in an<br>Argon–Ethanol Gas Mixture. High Energy Chemistry, 2021, 55, 525-530.                                | 0.9 | 8         |

**ΒΑΤΙΜΕΓΚΑΕ**ν

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The influence of a supersonic flow of gas at glow discharge. Journal of Physics: Conference Series, 2021, 1870, 012019.                                                             | 0.4 | 7         |
| 20 | The Influence of Supersonic Gas Stream on Spatial Structure of Glow Discharge. Journal of Physics:<br>Conference Series, 2020, 1588, 012061.                                        | 0.4 | 7         |
| 21 | Glow Discharge Characteristics in Transverse Supersonic Air Flow. Journal of Physics: Conference<br>Series, 2014, 567, 012032.                                                      | 0.4 | 6         |
| 22 | Arc-Assisted Synthesis of Germanium Nanocrystals in Argon. High Energy Chemistry, 2021, 55, 402-406.                                                                                | 0.9 | 5         |
| 23 | Longitudinal distribution of electrical parameters in normal glow discharge. Journal of Physics:<br>Conference Series, 2014, 567, 012036.                                           | 0.4 | 4         |
| 24 | The possibilities of control of the characteristics of a glow discharge by using the organization of supersonic gas flow. Journal of Physics: Conference Series, 2017, 927, 012079. | 0.4 | 3         |
| 25 | Self-Organization of a Laminar Structure of a Normal Clow Discharge. Journal of Engineering Physics and Thermophysics, 2016, 89, 493-498.                                           | 0.6 | 1         |
| 26 | Numerical simulation of the surface barrier discharge in the air. Journal of Physics: Conference Series, 2019, 1328, 012082.                                                        | 0.4 | 1         |
| 27 | Numerical Investigation of a Surface Barrier Discharge in Air at Atmospheric Pressure. Russian Physics<br>Journal, 2020, 62, 2015-2019.                                             | 0.4 | 1         |
| 28 | Micro-arc method for the synthesis of silicon nanostructures. Journal of Physics: Conference Series, 2021, 1870, 012012.                                                            | 0.4 | 1         |
| 29 | Synthesis of Microdiamonds and Germanium Nanotubes In the Argon-Germanium Arc. Journal of Physics: Conference Series, 2022, 2270, 012030.                                           | 0.4 | 1         |
| 30 | Heat Characteristics of Glow Discharge at Low Pressure with Supersonic Gas Flow. Journal of Physics: Conference Series, 2016, 669, 012063.                                          | 0.4 | 0         |
| 31 | About the nature of electrical conductivity a gas discharge plasma with a water-solution cathode.<br>Journal of Physics: Conference Series, 2018, 1058, 012037.                     | 0.4 | Ο         |
| 32 | Study of a DC electric discharge with a cathode loaded in the water flow. Journal of Physics:<br>Conference Series, 2018, 1058, 012038.                                             | 0.4 | 0         |
| 33 | Synthesis of carbon nanostructures in electric discharge. Journal of Physics: Conference Series, 2019, 1328, 012039.                                                                | 0.4 | Ο         |
| 34 | Internal characteristics of distribution of glow discharge at supersonic speed gas flow in the positive column area. Journal of Physics: Conference Series, 2019, 1328, 012032.     | 0.4 | 0         |
| 35 | Electric arc synthesis of germanium nanotubes. Journal of Physics: Conference Series, 2019, 1328, 012081.                                                                           | 0.4 | Ο         |
| 36 | Synthesis of silicon nanowires in electric arc argon plasma. Journal of Physics: Conference Series, 2020, 1588, 012057.                                                             | 0.4 | 0         |

**BATIMERKAEV** 

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Plasma-chemical synthesis of germanium nanotubes. Journal of Physics: Conference Series, 2021, 1870, 012002.                                                                | 0.4 | 0         |
| 38 | Synthesis of silicon carbide in arc discharge in fuel oil. Journal of Physics: Conference Series, 2021, 1870, 012005.                                                       | 0.4 | 0         |
| 39 | Synthesis of silicon spherical nanostructures in argon plasma. Journal of Physics: Conference Series, 2021, 1870, 012004.                                                   | 0.4 | 0         |
| 40 | Synthesis of nanodiamonds and carbon nanotubes in siliconargon arc. Journal of Physics: Conference Series, 2021, 1870, 012015.                                              | 0.4 | 0         |
| 41 | Synthesis of semiconductor nanostructures in an argon arc. Journal of Physics: Conference Series, 2021, 1870, 012013.                                                       | 0.4 | 0         |
| 42 | Nanodiamonds from Fuel. Journal of Physics: Conference Series, 2022, 2270, 012008.                                                                                          | 0.4 | 0         |
| 43 | Control of The Distribution of The Internal Characteristics of The Discharge Using Supersonic Gas<br>Pumping. Journal of Physics: Conference Series, 2022, 2270, 012046.    | 0.4 | 0         |
| 44 | Production of Hydrogen From Heavy Hydrocarbons. Journal of Physics: Conference Series, 2022, 2270,<br>012049.                                                               | 0.4 | 0         |
| 45 | Spatial Structure of Gas Dynamic Characteristics In A Glow Discharge With A Supersonic<br>Axisymmetric Gas Flow. Journal of Physics: Conference Series, 2022, 2270, 012047. | 0.4 | 0         |