Takuya Masuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1178755/publications.pdf

Version: 2024-02-01

687363 26 467 13 citations papers

19 h-index g-index 28 28 28 730 docs citations times ranked citing authors all docs

794594

#	Article	IF	CITATIONS
1	Instrumentation for tracking electrochemical reactions by x-ray photoelectron spectroscopy under conventional vacuum conditions. Journal of Physics Communications, 2021, 5, 015001.	1.2	4
2	Reactions of the Li ₂ MnO ₃ Cathode in an All-Solid-State Thin-Film Battery during Cycling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7650-7663.	8.0	13
3	Crystalline boron monosulfide nanosheets with tunable bandgaps. Journal of Materials Chemistry A, 2021, 9, 24631-24640.	10.3	21
4	Nanosized and metastable molybdenum oxides as negative electrode materials for durable high-energy aqueous Li-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
5	Lithiation/delithiation of a Silicon Thin Film Electrode for All-Solid-State Batteries Using Operando X-ray Photoelectron Spectroscopy Apparatus. Vacuum and Surface Science, 2021, 64, 552-555.	0.1	O
6	<i>In Situ</i> Observation of Lithiation and Delithiation Reactions of a Silicon Thin Film Electrode for All-Solid-State Lithium-Ion Batteries by X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 6649-6654.	4.6	29
7	Solvent-Dependent Adsorption of Perfluorosulfonated Ionomers on a Pt(111) Surface Using Atomic Force Microscopy. Langmuir, 2020, 36, 13793-13798.	3.5	7
8	Annual Meeting of JVSS 2019 at Tsukuba. Vacuum and Surface Science, 2020, 63, 329-329.	0.1	O
9	SR Applications for Fuel Cell Electrodes. Synchrotron Radiation News, 2020, 33, 27-33.	0.8	O
10	$\langle i \rangle$ In situ $\langle i \rangle$ X-ray photoelectron spectroscopy using a conventional Al-KÎ \pm source and an environmental cell for liquid samples and solid-liquid interfaces. Applied Physics Letters, 2019, 114, .	3.3	16
11	Surface State Change of Lithium Metal Anode in Full Cell during Long Term Cycles. Electrochemistry, 2019, 87, 84-88.	1.4	15
12	Quantitative cross-sectional mapping of nanomechanical properties of composite films for lithium ion batteries using bimodal mode atomic force microscopy. Journal of Power Sources, 2019, 413, 29-33.	7.8	11
13	X-ray Photoelectron Spectroscopy for Solution Species Using a Laboratory Apparatus. Vacuum and Surface Science, 2019, 62, 564-567.	0.1	O
14	Semiconductorâ€Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis. Chemistry - an Asian Journal, 2018, 13, 127-142.	3.3	47
15	Preparation and Characterization of Rice Husks-Derived Silicon-Tin/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites as Anode Materials for Lithium-Ion Batteries. Solid State Phenomena, 2018, 283, 46-54.	0.3	2
16	Various spectroelectrochemical cells for in situ observation of electrochemical processes at solidâ \in "liquid interfaces. Topics in Catalysis, 2018, 61, 2103-2113.	2.8	10
17	Change in Surface Chemistry of Magnesium by Alkylbromide Immersion Pretreatment. Electrochemistry, 2018, 86, 226-228.	1.4	O
18	Back to the Arizona. Hyomen Kagaku, 2017, 38, 44-45.	0.0	0

#	Article	IF	CITATION
19	Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO _{<i>x</i>} Nanowire. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9059-9070.	8.0	44
20	Potential-Dependent Adsorption and Desorption of Perfluorosulfonated Ionomer on a Platinum Electrode Surface Probed by Electrochemical Quartz Crystal Microbalance and Atomic Force Microscopy. Journal of Physical Chemistry C, 2013, 117, 15704-15709.	3.1	48
21	Potential-Dependent Adsorption/Desorption Behavior of Perfluorosulfonated Ionomer on a Gold Electrode Surface Studied by Cyclic Voltammetry, Electrochemical Quartz Microbalance, and Electrochemical Atomic Force Microscopy. Langmuir, 2013, 29, 2420-2426.	3.5	34
22	Formation of Functionalized Nanowires by Control of Selfâ€Assembly Using Multiple Modified Amyloid Peptides. Advanced Functional Materials, 2013, 23, 4881-4887.	14.9	24
23	<i>In situ</i> x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents. Applied Physics Letters, 2013, 103, .	3.3	89
24	Self-Assembly: Formation of Functionalized Nanowires by Control of Self-Assembly Using Multiple Modified Amyloid Peptides (Adv. Funct. Mater. 39/2013). Advanced Functional Materials, 2013, 23, 4880-4880.	14.9	0
25	Formation and Structure of Perfluorosulfonated Ionomer Thin Film on a Graphite Surface. Chemistry Letters, 2009, 38, 884-885.	1.3	29
26	Nanostructural Study of Silicon-Cobalt/Nitrogen-Doped Reduced Graphene Oxide Composites by Electron Microscopy for Using as Anode Material in Lithium-Ion Batteries. Solid State Phenomena, 0, 283, 37-45.	0.3	4