Gary J Olsen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11785406/gary-j-olsen-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52	20,731 citations	34	58
papers		h-index	g-index
58	26,110 ext. citations	16	5.87
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
52	The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. <i>Nucleic Acids Research</i> , 2020 , 48, D606-D612	20.1	206
51	PATRIC as a unique resource for studying antimicrobial resistance. <i>Briefings in Bioinformatics</i> , 2019 , 20, 1094-1102	13.4	43
50	KBase: The United States Department of Energy Systems Biology Knowledgebase. <i>Nature Biotechnology</i> , 2018 , 36, 566-569	44.5	419
49	The essential genome of the crenarchaeal model Sulfolobus islandicus. <i>Nature Communications</i> , 2018 , 9, 4908	17.4	44
48	Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Research</i> , 2017 , 45, D535-D542	20.1	809
47	PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. <i>Frontiers in Microbiology</i> , 2016 , 7, 118	5.7	65
46	RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. <i>Scientific Reports</i> , 2015 , 5, 8365	4.9	1061
45	Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum. <i>PLoS ONE</i> , 2015 , 10, e0126883	3.7	27
44	The repABC Plasmids with Quorum-Regulated Transfer Systems in Members of the Rhizobiales Divide into Two Structurally and Separately Evolving Groups. <i>Genome Biology and Evolution</i> , 2015 , 7, 3337-57	3.9	16
43	The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). <i>Nucleic Acids Research</i> , 2014 , 42, D206-14	20.1	2534
42	Quorum-dependent mannopine-inducible conjugative transfer of an Agrobacterium opine-catabolic plasmid. <i>Journal of Bacteriology</i> , 2014 , 196, 1031-44	3.5	12
41	In search of genome annotation consistency: solid gene clusters and how to use them. <i>3 Biotech</i> , 2014 , 4, 331-335	2.8	5
40	Genomes of the class Erysipelotrichia clarify the firmicute origin of the class Mollicutes. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2727-2741	2.2	31
39	SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. <i>PLoS ONE</i> , 2012 , 7, e48053	3.7	121
38	Differences between the normal vaginal bacterial community of baboons and that of humans. <i>American Journal of Primatology</i> , 2011 , 73, 119-26	2.5	22
37	Characterizing the native codon usages of a genome: an axis projection approach. <i>Molecular Biology and Evolution</i> , 2011 , 28, 211-21	8.3	22
36	Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20154-9	11.5	31

35	Modal codon usage: assessing the typical codon usage of a genome. <i>Molecular Biology and Evolution</i> , 2010 , 27, 800-10	8.3	34
34	Heterogeneity of vaginal microbial communities within individuals. <i>Journal of Clinical Microbiology</i> , 2009 , 47, 1181-9	9.7	115
33	Messenger RNA processing in Methanocaldococcus (Methanococcus) jannaschii. <i>Rna</i> , 2009 , 15, 1909-16	5.8	11
32	Protein-coding gene promoters in Methanocaldococcus (Methanococcus) jannaschii. <i>Nucleic Acids Research</i> , 2009 , 37, 3588-601	20.1	13
31	The RAST Server: rapid annotations using subsystems technology. <i>BMC Genomics</i> , 2008 , 9, 75	4.5	7153
30	A whole-genome approach to identifying protein binding sites: promoters in Methanocaldococcus (Methanococcus) jannaschii. <i>Nucleic Acids Research</i> , 2008 , 36, 6948-58	20.1	4
29	Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2461-70	4.8	937
28	Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. <i>Science</i> , 2007 , 317, 1921-6	533.3	613
27	The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation. <i>Nucleic Acids Research</i> , 2007 , 35, D347-53	20.1	77
26	Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. <i>Genome Research</i> , 2004 , 14, 1537-47	9.7	78
25	Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis. <i>Journal of Proteome Research</i> , 2004 , 3, 538-48	5.6	57
24	Archaeal RecA homologues: different response to DNA-damaging agents in mesophilic and thermophilic Archaea. <i>Extremophiles</i> , 2001 , 5, 265-75	3	19
23	Structural modifications of Methanococcus jannaschii flagellin proteins revealed by proteome analysis. <i>Proteomics</i> , 2001 , 1, 1033-42	4.8	17
22	Similar subunit architecture of archaeal and eukaryal RNA polymerases. <i>FEMS Microbiology Letters</i> , 2001 , 195, 85-90	2.9	12
21	Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. <i>Microbiology and Molecular Biology Reviews</i> , 2000 , 64, 202-36	13.2	515
20	Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry?. <i>Trends in Genetics</i> , 1999 , 15, 298-9	8.5	52
19	The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. <i>Nature</i> , 1998 , 392, 353-8	50.4	988
18	Archaeal genomics: an overview. <i>Cell</i> , 1997 , 89, 991-4	56.2	213

17	A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. <i>Gene</i> , 1997 , 197, GC11-26	3.8	87
16	The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. <i>Nature</i> , 1997 , 390, 364-70	50.4	1257
15	Lessons from an Archaeal genome: what are we learning from Methanococcus jannaschii?. <i>Trends in Genetics</i> , 1996 , 12, 377-9	8.5	47
14	Response : Methanococcus Genome. <i>Science</i> , 1996 , 274, 902-903	33.3	
13	Response : Methanococcus Genome. <i>Science</i> , 1996 , 274, 902-903	33.3	
12	fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. <i>Bioinformatics</i> , 1994 , 10, 41-8	7.2	313
11	The Ribosomal Database Project. <i>Nucleic Acids Research</i> , 1994 , 22, 3485-7	20.1	614
10	The ribosomal database project. <i>Nucleic Acids Research</i> , 1993 , 21, 3021-3	20.1	510
9	Ribosomal RNA: a key to phylogeny. FASEB Journal, 1993, 7, 113-23	0.9	508
8	A brief note concerning archaebacterial phylogeny. Canadian Journal of Microbiology, 1989 , 35, 119-23	3.2	20
7	Phylogenetic analysis using ribosomal RNA. <i>Methods in Enzymology</i> , 1988 , 164, 793-812	1.7	110
6	Are arguments against archaebacteria valid?. <i>Nature</i> , 1986 , 320, 401-402	50.4	13
5	The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. <i>Advances in Microbial Ecology</i> , 1986 , 1-55		511
4	Nucleotide sequence of the Dictyostelium discoideum small-subunit ribosomal ribonucleic acid inferred from the gene sequence: evolutionary implications. <i>Biochemistry</i> , 1983 , 22, 5858-5868	3.2	183
3	Secondary structure of the Dictyostelium discoideum small subunit ribosomal RNA. <i>Nucleic Acids Research</i> , 1983 , 11, 8037-49	20.1	40
2	Nucleotide sequence of Dictyostelium discoideum 5.8S ribosomal ribonucleic acid: evolutionary and secondary structural implications. <i>Biochemistry</i> , 1982 , 21, 2335-43	3.2	40
1	Enzymatic and chemical structure mapping of mouse 28S ribosomal ribonucleic acid contacts in 5.8S ribosomal ribonucleic acid. <i>Biochemistry</i> , 1982 , 21, 2320-9	3.2	38