Gary J Olsen

List of Publications by Citations

Source: https://exaly.com/author-pdf/11785406/gary-j-olsen-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 52
 20,731
 34
 58

 papers
 citations
 h-index
 g-index

 58
 26,110
 16
 5.87

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
52	The RAST Server: rapid annotations using subsystems technology. <i>BMC Genomics</i> , 2008 , 9, 75	4.5	7 ¹ 53
51	The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). <i>Nucleic Acids Research</i> , 2014 , 42, D206-14	20.1	2534
50	The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. <i>Nature</i> , 1997 , 390, 364-70	50.4	1257
49	RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. <i>Scientific Reports</i> , 2015 , 5, 8365	4.9	1061
48	The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. <i>Nature</i> , 1998 , 392, 353-8	50.4	988
47	Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2461-70	4.8	937
46	Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Research</i> , 2017 , 45, D535-D542	20.1	809
45	The Ribosomal Database Project. <i>Nucleic Acids Research</i> , 1994 , 22, 3485-7	20.1	614
44	Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. <i>Science</i> , 2007 , 317, 1921-	6 33.3	613
43	Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. <i>Microbiology and Molecular Biology Reviews</i> , 2000 , 64, 202-36	13.2	515
42	The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. <i>Advances in Microbial Ecology</i> , 1986 , 1-55		511
41	The ribosomal database project. <i>Nucleic Acids Research</i> , 1993 , 21, 3021-3	20.1	510
40	Ribosomal RNA: a key to phylogeny. <i>FASEB Journal</i> , 1993 , 7, 113-23	0.9	508
39	KBase: The United States Department of Energy Systems Biology Knowledgebase. <i>Nature Biotechnology</i> , 2018 , 36, 566-569	44.5	419
38	fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. <i>Bioinformatics</i> , 1994 , 10, 41-8	7.2	313
37	Archaeal genomics: an overview. <i>Cell</i> , 1997 , 89, 991-4	56.2	213
36	The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. <i>Nucleic Acids Research</i> , 2020 , 48, D606-D612	20.1	206

(2013-1983)

35	Nucleotide sequence of the Dictyostelium discoideum small-subunit ribosomal ribonucleic acid inferred from the gene sequence: evolutionary implications. <i>Biochemistry</i> , 1983 , 22, 5858-5868	3.2	183
34	SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. <i>PLoS ONE</i> , 2012 , 7, e48053	3.7	121
33	Heterogeneity of vaginal microbial communities within individuals. <i>Journal of Clinical Microbiology</i> , 2009 , 47, 1181-9	9.7	115
32	Phylogenetic analysis using ribosomal RNA. <i>Methods in Enzymology</i> , 1988 , 164, 793-812	1.7	110
31	A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. <i>Gene</i> , 1997 , 197, GC11-26	3.8	87
30	Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. <i>Genome Research</i> , 2004 , 14, 1537-47	9.7	78
29	The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation. <i>Nucleic Acids Research</i> , 2007 , 35, D347-53	20.1	77
28	PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. <i>Frontiers in Microbiology</i> , 2016 , 7, 118	5.7	65
27	Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis. <i>Journal of Proteome Research</i> , 2004 , 3, 538-48	5.6	57
26	Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry?. <i>Trends in Genetics</i> , 1999 , 15, 298-9	8.5	52
25	Lessons from an Archaeal genome: what are we learning from Methanococcus jannaschii?. <i>Trends in Genetics</i> , 1996 , 12, 377-9	8.5	47
24	The essential genome of the crenarchaeal model Sulfolobus islandicus. <i>Nature Communications</i> , 2018 , 9, 4908	17.4	44
23	PATRIC as a unique resource for studying antimicrobial resistance. <i>Briefings in Bioinformatics</i> , 2019 , 20, 1094-1102	13.4	43
22	Secondary structure of the Dictyostelium discoideum small subunit ribosomal RNA. <i>Nucleic Acids Research</i> , 1983 , 11, 8037-49	20.1	40
21	Nucleotide sequence of Dictyostelium discoideum 5.8S ribosomal ribonucleic acid: evolutionary and secondary structural implications. <i>Biochemistry</i> , 1982 , 21, 2335-43	3.2	40
20	Enzymatic and chemical structure mapping of mouse 28S ribosomal ribonucleic acid contacts in 5.8S ribosomal ribonucleic acid. <i>Biochemistry</i> , 1982 , 21, 2320-9	3.2	38
19	Modal codon usage: assessing the typical codon usage of a genome. <i>Molecular Biology and Evolution</i> , 2010 , 27, 800-10	8.3	34
18	Genomes of the class Erysipelotrichia clarify the firmicute origin of the class Mollicutes. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2727-2741	2.2	31

17	Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20154-9	11.5	31
16	Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum. <i>PLoS ONE</i> , 2015 , 10, e0126883	3.7	27
15	Differences between the normal vaginal bacterial community of baboons and that of humans. <i>American Journal of Primatology</i> , 2011 , 73, 119-26	2.5	22
14	Characterizing the native codon usages of a genome: an axis projection approach. <i>Molecular Biology and Evolution</i> , 2011 , 28, 211-21	8.3	22
13	A brief note concerning archaebacterial phylogeny. <i>Canadian Journal of Microbiology</i> , 1989 , 35, 119-23	3.2	20
12	Archaeal RecA homologues: different response to DNA-damaging agents in mesophilic and thermophilic Archaea. <i>Extremophiles</i> , 2001 , 5, 265-75	3	19
11	Structural modifications of Methanococcus jannaschii flagellin proteins revealed by proteome analysis. <i>Proteomics</i> , 2001 , 1, 1033-42	4.8	17
10	The repABC Plasmids with Quorum-Regulated Transfer Systems in Members of the Rhizobiales Divide into Two Structurally and Separately Evolving Groups. <i>Genome Biology and Evolution</i> , 2015 , 7, 3337-57	3.9	16
9	Protein-coding gene promoters in Methanocaldococcus (Methanococcus) jannaschii. <i>Nucleic Acids Research</i> , 2009 , 37, 3588-601	20.1	13
8	Are arguments against archaebacteria valid?. <i>Nature</i> , 1986 , 320, 401-402	50.4	13
7	Quorum-dependent mannopine-inducible conjugative transfer of an Agrobacterium opine-catabolic plasmid. <i>Journal of Bacteriology</i> , 2014 , 196, 1031-44	3.5	12
6	Similar subunit architecture of archaeal and eukaryal RNA polymerases. <i>FEMS Microbiology Letters</i> , 2001 , 195, 85-90	2.9	12
5	Messenger RNA processing in Methanocaldococcus (Methanococcus) jannaschii. <i>Rna</i> , 2009 , 15, 1909-16	5.8	11
4	In search of genome annotation consistency: solid gene clusters and how to use them. <i>3 Biotech</i> , 2014 , 4, 331-335	2.8	5
3	A whole-genome approach to identifying protein binding sites: promoters in Methanocaldococcus (Methanococcus) jannaschii. <i>Nucleic Acids Research</i> , 2008 , 36, 6948-58	20.1	4
2	Response : Methanococcus Genome. <i>Science</i> , 1996 , 274, 902-903	33.3	
1	Response : Methanococcus Genome. <i>Science</i> , 1996 , 274, 902-903	33.3	