
Valerie J Harwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/117845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiology Reviews, 2014, 38, 1-40.	8.6	496
2	Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection. Applied and Environmental Microbiology, 2005, 71, 3163-3170.	3.1	460
3	Persistence and Differential Survival of Fecal Indicator Bacteria in Subtropical Waters and Sediments. Applied and Environmental Microbiology, 2005, 71, 3041-3048.	3.1	455
4	Classification of Antibiotic Resistance Patterns of Indicator Bacteria by Discriminant Analysis: Use in Predicting the Source of Fecal Contamination in Subtropical Waters. Applied and Environmental Microbiology, 2000, 66, 3698-3704.	3.1	308
5	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	8.0	153
6	Performance of Two Quantitative PCR Methods for Microbial Source Tracking of Human Sewage and Implications for Microbial Risk Assessment in Recreational Waters. Applied and Environmental Microbiology, 2012, 78, 7317-7326.	3.1	128
7	Microbes in beach sands: integrating environment, ecology and public health. Reviews in Environmental Science and Biotechnology, 2014, 13, 329-368.	8.1	127
8	Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. International Journal of Environmental Research and Public Health, 2018, 15, 2842.	2.6	111
9	Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. Water (Switzerland), 2016, 8, 231.	2.7	106
10	Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Environment International, 2018, 116, 308-318.	10.0	92
11	Persistence and Decay of Fecal Microbiota in Aquatic Habitats. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	89
12	Validation and field testing of library-independent microbial source tracking methods in the Gulf of Mexico. Water Research, 2009, 43, 4812-4819.	11.3	87
13	Evaluation of the novel crAssphage marker for sewage pollution tracking in storm drain outfalls in Tampa, Florida. Water Research, 2018, 131, 142-150.	11.3	87
14	Methods for isolation and confirmation of Vibrio vulnificus from oysters and environmental sources: a review. Journal of Microbiological Methods, 2004, 59, 301-316.	1.6	86
15	Phenotypic library-based microbial source tracking methods: Efficacy in the California collaborative study. Journal of Water and Health, 2003, 1, 153-166.	2.6	85
16	The influence of predation and competition on the survival of commensal and pathogenic fecal bacteria in aquatic habitats. Environmental Microbiology, 2013, 15, 517-526.	3.8	84
17	A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Critical Reviews in Toxicology, 2015, 45, 813-836.	3.9	84
18	Beach sand and the potential for infectious disease transmission: observations and recommendations. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 101-120.	0.8	80

Valerie J Harwood

#	Article	IF	CITATIONS
19	Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. Environmental Science & Technology, 2022, 56, 9149-9160.	10.0	80
20	Vancomycin-Resistant Enterococcus spp. Isolated from Wastewater and Chicken Feces in the United States. Applied and Environmental Microbiology, 2001, 67, 4930-4933.	3.1	79
21	Performance of viruses and bacteriophages for fecal source determination in a multi-laboratory, comparative study. Water Research, 2013, 47, 6929-6943.	11.3	75
22	Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation. Environmental Microbiology, 2011, 13, 932-942.	3.8	73
23	Quantitative microbial risk assessment of microbial source tracking markers in recreational water contaminated with fresh untreated and secondary treated sewage. Environment International, 2018, 117, 243-249.	10.0	67
24	Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake. Water Research, 2012, 46, 5799-5812.	11.3	66
25	Application of SourceTracker for Accurate Identification of Fecal Pollution in Recreational Freshwater: A Double-Blinded Study. Environmental Science & Technology, 2018, 52, 4207-4217.	10.0	59
26	Synergy between quantitative microbial source tracking (qMST) and quantitative microbial risk assessment (QMRA): A review and prospectus. Environment International, 2019, 130, 104703.	10.0	58
27	Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 2019, 162, 456-470.	11.3	53
28	Assessment of statistical methods used in library-based approaches to microbial source tracking. Journal of Water and Health, 2003, 1, 209-223.	2.6	46
29	Agrochemicals indirectly increase survival of <i>E. coli</i> O157:H7 and indicator bacteria by reducing ecosystem services. Ecological Applications, 2014, 24, 1945-1953.	3.8	44
30	Relationships among microbial indicators of fecal pollution, microbial source tracking markers, and pathogens in Costa Rican coastal waters. Water Research, 2021, 188, 116507.	11.3	40
31	A Novel Microbial Source Tracking Microarray for Pathogen Detection and Fecal Source Identification in Environmental Systems. Environmental Science & Technology, 2015, 49, 7319-7329.	10.0	36
32	Differential decomposition of bacterial and viral fecal indicators in common human pollution types. Water Research, 2016, 105, 591-601.	11.3	32
33	Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment. Applied and Environmental Microbiology, 2016, 82, 5653-5660.	3.1	32
34	Multiple lines of evidence to identify sewage as the cause of water quality impairment in an urbanized tropical watershed. Water Research, 2017, 116, 23-33.	11.3	31
35	Extended persistence of general and cattle-associated fecal indicators in marine and freshwater environment. Science of the Total Environment, 2019, 650, 1292-1302.	8.0	29
36	Opportunities and limitations of molecular methods for quantifying microbial compliance parameters in EU bathing waters. Environment International, 2014, 64, 124-128.	10.0	28

VALERIE J HARWOOD

#	Article	IF	CITATIONS
37	A framework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface water, recycled water and wastewater. Critical Reviews in Environmental Science and Technology, 2022, 52, 4395-4419.	12.8	27
38	Human-Associated Bacteroides spp. and Human Polyomaviruses as Microbial Source Tracking Markers in Hawaii. Applied and Environmental Microbiology, 2016, 82, 6757-6767.	3.1	24
39	Sediment and Vegetation as Reservoirs of Vibrio vulnificus in the Tampa Bay Estuary and Gulf of Mexico. Applied and Environmental Microbiology, 2015, 81, 2489-2494.	3.1	22
40	Use of Escherichia coli genes associated with human sewage to track fecal contamination source in subtropical waters. Science of the Total Environment, 2019, 686, 1069-1075.	8.0	21
41	LA35 Poultry Fecal Marker Persistence Is Correlated with That of Indicators and Pathogens in Environmental Waters. Applied and Environmental Microbiology, 2015, 81, 4616-4625.	3.1	20
42	Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study. Journal of Water and Health, 2003, 1, 153-66.	2.6	19
43	Transport and attenuation of Salmonella enterica, fecal indicator bacteria and a poultry litter marker gene are correlated in soil columns. Science of the Total Environment, 2017, 598, 204-212.	8.0	18
44	Dynamic performance of biosand filters. Journal - American Water Works Association, 2013, 105, E587.	0.3	17
45	Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems. Applied and Environmental Microbiology, 2016, 82, 1625-1635.	3.1	17
46	Toward Forensic Uses of Microbial Source Tracking. Microbiology Spectrum, 2018, 6, .	3.0	16
47	Interventions can shift the thermal optimum for parasitic disease transmission. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
48	Protozoan Predation Is Differentially Affected by Motility of Enteric Pathogens in Water vs. Sediments. Microbial Ecology, 2014, 68, 751-760.	2.8	13
49	Evidence for Extraintestinal Growth of Bacteroidales Originating from Poultry Litter. Applied and Environmental Microbiology, 2015, 81, 196-202.	3.1	12
50	The Use of Genetic Typing Methods to Discriminate Among Strains of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus. Journal of AOAC INTERNATIONAL, 2010, 93, 1553-1569.	1.5	9
51	Vancomycin resistance plasmids affect persistence of Enterococcus faecium in water. Water Research, 2019, 166, 115069.	11.3	9
52	Genetic and quantitative assessment of <i>Vibrio vulnificus</i> populations in oyster (<i>Crassostrea) Tj ETQq0</i>	0 0 rgBT / 2.4	Overlock 10 T
53	Assumptions and Limitations Associated with Microbial Source Tracking Methods 0 33-64.		7 _

⁵⁴ Differential Expression of a Sodium-Phosphate Cotransporter Among Vibrio vulnificus Strains. Microbial Ecology, 2014, 67, 24-33.

2.8 5

Valerie J Harwood

#	Article	IF	CITATIONS
55	Antibiotic-resistant Enterococcus species in marine habitats: A review. Current Opinion in Environmental Science and Health, 2020, 16, 92-100.	4.1	5
56	Critical review of methods for isothermal amplification of nucleic acids for environmental analysis. Journal of Microbiological Methods, 2020, 179, 106099.	1.6	3
57	The relationship between environmental parameters and microbial water quality at two Costa Rican beaches from 2002 to 2017. Marine Pollution Bulletin, 2021, 163, 111957.	5.0	3
58	Microbial Source Tracking. , 0, , 189-216.		3
59	Comparison of DNA Methylation in Vibrio vulnificus Cells Grown in Human Serum with Those Grown in Seawater. Microbiology Resource Announcements, 2019, 8, .	0.6	0
60	Toward Forensic Uses of Microbial Source Tracking. , 0, , 115-141.		0
61	An assessment of three methods for extracting bacterial DNA from beach sand. Journal of Applied Microbiology, 2022, 132, 2990-3000.	3.1	Ο