Hiroyuki Niida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11784333/publications.pdf

Version: 2024-02-01

44 papers

3,835 citations

257450 24 h-index 233421 45 g-index

45 all docs

45 docs citations

45 times ranked

5884 citing authors

#	Article	IF	CITATIONS
1	G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes and Development, 2002, 16, 1779-1791.	5.9	1,084
2	DNA damage checkpoints in mammals. Mutagenesis, 2006, 21, 3-9.	2.6	366
3	Cloning of mice to six generations. Nature, 2000, 407, 318-319.	27.8	242
4	Chk1 Is a Histone H3 Threonine 11 Kinase that Regulates DNA Damage-Induced Transcriptional Repression. Cell, 2008, 132, 221-232.	28.9	238
5	Cell cycle regulation by long non-coding RNAs. Cellular and Molecular Life Sciences, 2013, 70, 4785-4794.	5 . 4	226
6	Severe growth defect in mouse cells lacking the telomerase RNA component. Nature Genetics, 1998, 19, 203-206.	21.4	159
7	Specific Role of Chk1 Phosphorylations in Cell Survival and Checkpoint Activation. Molecular and Cellular Biology, 2007, 27, 2572-2581.	2.3	153
8	Cyclin A–Cdk1 regulates the origin firing program in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3184-3189.	7.1	133
9	Telomere Maintenance in Telomerase-Deficient Mouse Embryonic Stem Cells: Characterization of an Amplified Telomeric DNA. Molecular and Cellular Biology, 2000, 20, 4115-4127.	2.3	129
10	Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes and Development, 2010, 24, 333-338.	5.9	115
11	Depletion of Chk1 Leads to Premature Activation of Cdc2-cyclin B and Mitotic Catastrophe. Journal of Biological Chemistry, 2005, 280, 39246-39252.	3.4	112
12	Long Noncoding RNA <i>ELIT-1</i> Acts as a Smad3 Cofactor to Facilitate TGFβ/Smad Signaling and Promote Epithelial–Mesenchymal Transition. Cancer Research, 2019, 79, 2821-2838.	0.9	84
13	Genetic instability in cancer cells by impaired cell cycle checkpoints. Cancer Science, 2006, 97, 984-989.	3.9	73
14	Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells. Cancer Science, 2010, 101, 2505-2509.	3.9	59
15	Cooperative functions of Chk1 and Chk2 reduce tumour susceptibility in vivo. EMBO Journal, 2010, 29, 3558-3570.	7.8	48
16	Protein phosphatase $1\hat{l}^3$ is responsible for dephosphorylation of histone H3 at Thr 11 after DNA damage. EMBO Reports, 2010, 11, 883-889.	4.5	48
17	DNA damage responses in skin biology—Implications in tumor prevention and aging acceleration. Journal of Dermatological Science, 2009, 56, 76-81.	1.9	46
18	Human SAD1 Kinase Is Involved in UV-induced DNA Damage Checkpoint Function. Journal of Biological Chemistry, 2004, 279, 31164-31170.	3.4	45

#	Article	IF	CITATIONS
19	Negative Regulation of Chk2 Expression by p53 Is Dependent on the CCAAT-binding Transcription Factor NF-Y. Journal of Biological Chemistry, 2004, 279, 25093-25100.	3.4	43
20	<scp>YB</scp> â€1 promotes transcription of <i>cyclin D1</i> in human nonâ€smallâ€cell lung cancers. Genes To Cells, 2014, 19, 504-516.	1.2	43
21	Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein. Anticancer Research, 2016, 36, 1605-11.	1.1	31
22	Fbw7 Targets GATA3 through Cyclin-Dependent Kinase 2-Dependent Proteolysis and Contributes to Regulation of T-Cell Development. Molecular and Cellular Biology, 2014, 34, 2732-2744.	2.3	30
23	Phosphorylated HBO1 at UV irradiated sites is essential for nucleotide excision repair. Nature Communications, 2017, 8, 16102.	12.8	29
24	Histone H3 Lysine 36 Trimethylation Is Established over the <i>Xist</i> Promoter by Antisense <i>Tsix</i> Transcription and Contributes to Repressing <i>Xist</i> Expression. Molecular and Cellular Biology, 2015, 35, 3909-3920.	2.3	27
25	Regulation of GATA-binding Protein 2 Levels via Ubiquitin-dependent Degradation by Fbw7. Journal of Biological Chemistry, 2015, 290, 10368-10381.	3.4	27
26	UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4 ^{DDB2} -Mediated Degradation To Regulate Cell Proliferation. Molecular and Cellular Biology, 2016, 36, 394-406.	2.3	27
27	Chk1 phosphorylates the tumour suppressor Mig-6, regulating the activation of EGF signalling. EMBO Journal, 2012, 31, 2365-2377.	7.8	25
28	Essential role of Chk1 in S phase progression through regulation of RNR2 expression. Biochemical and Biophysical Research Communications, 2008, 374, 79-83.	2.1	23
29	Chk1–cyclin A/Cdk1 axis regulates origin firing programs in mammals. Chromosome Research, 2010, 18, 103-113.	2.2	22
30	$\mbox{\scp>YB1}$ binds to and represses the $\mbox{\scp>p16}$ tumor suppressor gene. Genes To Cells, 2013, 18, 999-1006.	1.2	18
31	Up-regulation of Cks1 and Skp2 with TNFα/NF-κB signaling in chronic progressive nephropathy. Genes To Cells, 2011, 16, 1110-1120.	1.2	16
32	Inhibiting Skp2 E3 Ligase Suppresses Bleomycin-Induced Pulmonary Fibrosis. International Journal of Molecular Sciences, 2018, 19, 474.	4.1	16
33	The Amelioration of Renal Damage in Skp2-Deficient Mice Canceled by p27 Kip1 Deficiency in Skp2â^'/â^' p27â^'/â^' Mice. PLoS ONE, 2012, 7, e36249.	2.5	15
34	Oncogenic Ras influences the expression of multiple IncRNAs. Cytotechnology, 2016, 68, 1591-1596.	1.6	14
35	HDAC3 Is Required for XPC Recruitment and Nucleotide Excision Repair of DNA Damage Induced by UV Irradiation. Molecular Cancer Research, 2020, 18, 1367-1378.	3.4	14
36	Homeobox Transcription Factor NKX2-1 Promotes $\langle i \rangle$ Cyclin D1 $\langle i \rangle$ Transcription in Lung Adenocarcinomas. Molecular Cancer Research, 2017, 15, 1388-1397.	3.4	10

#	Article	IF	CITATIONS
37	Isozyme-Specific Role of SAD-A in Neuronal Migration During Development of Cerebral Cortex. Cerebral Cortex, 2019, 29, 3738-3751.	2.9	10
38	Involvement of ribonucleotide reductase-M1 in 5-fluorouracil-induced DNA damage in esophageal cancer cell lines. International Journal of Oncology, 2013, 42, 1951-1960.	3.3	9
39	Dynamics of transcription-mediated conversion from euchromatin to facultative heterochromatin at the Xist promoter by Tsix. Cell Reports, 2021, 34, 108912.	6.4	9
40	Ptpcd-1 is a novel cell cycle related phosphatase that regulates centriole duplication and cytokinesis. Biochemical and Biophysical Research Communications, 2009, 380, 460-466.	2.1	7
41	Telomeres reforged with non-telomeric sequences in mouse embryonic stem cells. Nature Communications, 2021, 12, 1097.	12.8	3
42	Homologous recombination is reduced in female embryonic stem cells by two active X chromosomes. EMBO Reports, 2021, 22, e52190.	4.5	3
43	Regulation of DNA Replication Licensing. Current Drug Targets, 2012, 13, 1588-1592.	2.1	2
44	Substitution of Thr572 to Ala in mouse c-Myb attenuates progression of early erythroid differentiation. Scientific Reports, 2020, 10, 14381.	3.3	1