Katharine S Ullman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11782008/publications.pdf Version: 2024-02-01

KATHADINE S HILMAN

#	Article	IF	CITATIONS
1	Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. ELife, 2021, 10, .	2.8	14
2	Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling. Molecular Cell, 2020, 79, 342-358.e12.	4.5	51
3	Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Molecular Biology of the Cell, 2020, 31, 1774-1787.	0.9	52
4	LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation. Nature, 2020, 582, 115-118.	13.7	97
5	A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8900-E8908.	3.3	50
6	Repo-Man/PP1 regulates heterochromatin formation in interphase. Nature Communications, 2017, 8, 14048.	5.8	46
7	Coordinated events of nuclear assembly. Current Opinion in Cell Biology, 2017, 46, 39-45.	2.6	46
8	LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2166-E2175.	3.3	149
9	Nup153 and Nup50 promote recruitment of 53BP1 to DNA repair foci by antagonizing BRCA1-dependent events. Journal of Cell Science, 2017, 130, 3347-3359.	1.2	19
10	ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Molecular Biology of the Cell, 2015, 26, 2217-2226.	0.9	54
11	Enhanced Arginine Methylation of Programmed Cell Death 4 Protein during Nutrient Deprivation Promotes Tumor Cell Viability. Journal of Biological Chemistry, 2014, 289, 17541-17552.	1.6	21
12	The Nup153-Nup50 Protein Interface and Its Role in Nuclear Import*. Journal of Biological Chemistry, 2012, 287, 38515-38522.	1.6	49
13	Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2. Nucleus, 2012, 3, 349-358.	0.6	40
14	A Time-Lapse Imaging Assay to Study Nuclear Envelope Breakdown. Methods in Molecular Biology, 2012, 931, 111-122.	0.4	7
15	The nuclear envelope environment and its cancer connections. Nature Reviews Cancer, 2012, 12, 196-209.	12.8	292
16	Coordinating postmitotic nuclear pore complex assembly with abscission timing. Nucleus, 2011, 2, 283-288.	0.6	18
17	Protein Arginine Methyltransferase 5 Accelerates Tumor Growth by Arginine Methylation of the Tumor Suppressor Programmed Cell Death 4. Cancer Research, 2011, 71, 5579-5587.	0.4	126
18	Time-lapse Imaging of Mitosis After siRNA Transfection. Journal of Visualized Experiments, 2010, , .	0.2	6

KATHARINE S ULLMAN

#	Article	IF	CITATIONS
19	Defects in nuclear pore assembly lead to activation of an Aurora B–mediated abscission checkpoint. Journal of Cell Biology, 2010, 191, 923-931.	2.3	95
20	The Nucleoporin Nup153 Has Separable Roles in Both Early Mitotic Progression and the Resolution of Mitosis. Molecular Biology of the Cell, 2009, 20, 1652-1660.	0.9	80
21	Biology and Biophysics of the Nuclear Pore Complex and Its Components. International Review of Cell and Molecular Biology, 2008, 267, 299-342.	1.6	70
22	Sequence Preference in RNA Recognition by the Nucleoporin Nup153. Journal of Biological Chemistry, 2007, 282, 8734-8740.	1.6	14
23	Molecular Characterization of the Ran-binding Zinc Finger Domain of Nup153. Journal of Biological Chemistry, 2007, 282, 17090-17100.	1.6	41
24	Changes in Nucleoporin Domain Topology in Response to Chemical Effectors. Journal of Molecular Biology, 2006, 363, 39-50.	2.0	34
25	Studying nuclear disassembly in vitro using Xenopus egg extract. Methods, 2006, 39, 284-290.	1.9	10
26	The nuclear envelope: form and reformation. Current Opinion in Cell Biology, 2006, 18, 108-116.	2.6	90
27	Nuclear Envelope Breakdown Is Coordinated by Both Nup358/RanBP2 and Nup153, Two Nucleoporins with Zinc Finger Modules. Molecular Biology of the Cell, 2006, 17, 760-769.	0.9	46
28	Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma, 2005, 114, 319-330.	1.0	83
29	Nucleoporin Domain Topology is Linked to the Transport Status of the Nuclear Pore Complex. Journal of Molecular Biology, 2005, 351, 784-798.	2.0	68
30	Distinct Functional Domains within Nucleoporins Nup153 and Nup98 Mediate Transcription-dependent Mobility. Molecular Biology of the Cell, 2004, 15, 1991-2002.	0.9	107
31	The RNA binding domain within the nucleoporin Nup153 associates preferentially with single-stranded RNA. Rna, 2004, 10, 19-27.	1.6	10
32	Nucleocytoplasmic Transport: Integrating mRNA Production and Turnover with Export through the Nuclear Pore. Molecular and Cellular Biology, 2004, 24, 3069-3076.	1.1	67
33	The COPI Complex Functions in Nuclear Envelope Breakdown and Is Recruited by the Nucleoporin Nup153. Developmental Cell, 2003, 5, 487-498.	3.1	70
34	Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. Journal of Structural Biology, 2002, 140, 254-267.	1.3	125
35	RNA Export: Searching for mRNA Identity. Current Biology, 2002, 12, R461-R463.	1.8	10
36	Analysis of RNA Export Using Xenopus Oocytes. Current Protocols in Cell Biology, 2001, 10, Unit 11.14.	2.3	1

#	Article	IF	CITATIONS
37	RNA Association Defines a Functionally Conserved Domain in the Nuclear Pore Protein Nup153. Journal of Biological Chemistry, 2001, 276, 45349-45357.	1.6	25
38	Nuclear Export of Mammalian PERIOD Proteins. Journal of Biological Chemistry, 2001, 276, 45921-45927.	1.6	78
39	The Nucleoporin Nup153 Plays a Critical Role in Multiple Types of Nuclear Export. Molecular Biology of the Cell, 1999, 10, 649-664.	0.9	131
40	Nuclear Export Receptors: From Importin to Exportin. Cell, 1997, 90, 967-970.	13.5	261