Jeffrey A Back

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11781427/publications.pdf Version: 2024-02-01

IFFEDEV A BACK

#	Article	IF	CITATIONS
1	Compensatory dynamics of lotic algae break down nonlinearly with increasing nutrient enrichment. Ecology, 2022, 103, e3613.	3.2	1
2	Lowâ€level dissolved organic carbon subsidies drive a trophic upsurge in a boreal stream. Freshwater Biology, 2020, 65, 920-934.	2.4	6
3	Effects of stream velocity and phosphorus concentrations on alkaline phosphatase activity and carbon:phosphorus ratios in periphyton. Hydrobiologia, 2019, 826, 173-182.	2.0	10
4	Spatial, temporal and experimental: Three study design cornerstones for establishing defensible numeric criteria in freshwater ecosystems. Journal of Applied Ecology, 2018, 55, 2114-2123.	4.0	21
5	A Metagenome-Based Investigation of Gene Relationships for Non-Substrate-Associated Microbial Phosphorus Cycling in the Water Column of Streams and Rivers. Microbial Ecology, 2018, 76, 856-865.	2.8	5
6	Microbial Community Structure and Function Decoupling Across a Phosphorus Gradient in Streams. Microbial Ecology, 2018, 75, 64-73.	2.8	33
7	Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology, 2018, 99, 47-56.	3.2	89
8	Catchment-scale alder cover controls nitrogen fixation in boreal headwater streams. Freshwater Science, 2017, 36, 523-532.	1.8	10
9	Lowâ€level addition of dissolved organic carbon increases basal ecosystem function in a boreal headwater stream. Ecosphere, 2017, 8, e01739.	2.2	17
10	Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in fieldâ€based stream mesocosms. Environmental Toxicology and Chemistry, 2016, 35, 660-675.	4.3	30
11	Consumer-mediated nutrient recycling is influenced by interactions between nutrient enrichment and the antimicrobial agent triclosan. Freshwater Science, 2016, 35, 856-872.	1.8	6
12	Sex and size matter: ontogenetic patterns of nutrient content of aquatic insects. Freshwater Science, 2013, 32, 837-848.	1.8	44
13	Catchment topography and wetland geomorphology drive macroinvertebrate community structure and juvenile salmonid distributions in south-central Alaska headwater streams. Freshwater Science, 2012, 31, 341-364.	1.8	18
14	Fish-mediated nutrient cycling and benthic microbial processes: can consumers influence stream nutrient cycling at multiple spatial scales?. Freshwater Science, 2012, 31, 928-944.	1.8	15
15	Allochthonous inputs from grass-dominated wetlands support juvenile salmonids in headwater streams: evidence from stable isotopes of carbon, hydrogen, and nitrogen. Freshwater Science, 2012, 31, 121-132.	1.8	21
16	Grazing minnows increase benthic autotrophy and enhance the response of periphyton elemental composition to experimental phosphorus additions. Freshwater Science, 2012, 31, 451-462.	1.8	17
17	Alder cover drives nitrogen availability in Kenai lowland headwater streams, Alaska. Biogeochemistry, 2012, 107, 135-148.	3.5	40
18	Breakdown rates, nutrient concentrations, and macroinvertebrate colonization of bluejoint grass litter in headwater streams of the Kenai Peninsula, Alaska. Journal of the North American Benthological Society, 2011, 30, 386-398.	3.1	22

JEFFREY A BACK

#	Article	IF	CITATIONS
19	Influence of drought and total phosphorus on diel pH in wadeable streams: Implications for ecological risk assessment of ionizable contaminants. Integrated Environmental Assessment and Management, 2011, 7, 636-647.	2.9	34
20	Exploring <i>Lemna gibba</i> thresholds to nutrient and chemical stressors: Differential effects of triclosan on internal stoichiometry and nitrate uptake across a nitrogen:phosphorus gradient. Environmental Toxicology and Chemistry, 2010, 29, 2363-2370.	4.3	10
21	INFLUENCE OF NITROGEN AND PHOSPHORUS CONCENTRATIONS AND RATIOS ON LEMNA GIBBA GROWTH RESPONSES TO TRICLOSAN IN LABORATORY AND STREAM MESOCOSM EXPERIMENTS. Environmental Toxicology and Chemistry, 2009, 28, 2610.	4.3	29
22	Nutrient Bioassays of Growth Parameters for Algae in the North Bosque River of Central Texas ¹ . Journal of the American Water Resources Association, 2008, 44, 1219-1230.	2.4	4
23	Does nutrient enrichment decouple algal–bacterial production in periphyton?. Journal of the North American Benthological Society, 2008, 27, 332-344.	3.1	91
24	Ontogenic differences in mayfly stoichiometry influence growth rates in response to phosphorus enrichment. Fundamental and Applied Limnology, 2008, 171, 233-240.	0.7	24
25	The role of N2 fixation in alleviating N limitation in wetland metaphyton: enzymatic, isotopic, and elemental evidence. Biogeochemistry, 2007, 84, 207-218.	3.5	33