John Kendrick-Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11780214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Approaches to Identify and Characterise MYO6-Cargo Interactions. Advances in Experimental Medicine and Biology, 2020, 1239, 355-380.	0.8	2
2	Myosin VI-Dependent Actin Cages Encapsulate Parkin-Positive Damaged Mitochondria. Developmental Cell, 2018, 44, 484-499.e6.	3.1	77
3	Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding. Biochemical Journal, 2016, 473, 3307-3319.	1.7	17
4	Myosins, Actin and Autophagy. Traffic, 2016, 17, 878-890.	1.3	78
5	Myosins: Domain Organisation, Motor Properties, Physiological Roles and Cellular Functions. Handbook of Experimental Pharmacology, 2016, 235, 77-122.	0.9	50
6	Editorial Overview: Myosins in Review. Traffic, 2016, 17, 819-821.	1.3	3
7	Calcium gets myosin VI ready for work. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2325-2327.	3.3	1
8	The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy. PLoS Pathogens, 2015, 11, e1005174.	2.1	177
9	Functional roles for myosin 1c in cellular signaling pathways. Cellular Signalling, 2013, 25, 229-235.	1.7	19
10	Small-molecule inhibitors of myosin proteins. Future Medicinal Chemistry, 2013, 5, 41-52.	1.1	80
11	Myosin VI and its cargo adaptors – linking endocytosis and autophagy. Journal of Cell Science, 2013, 126, 2561-70.	1.2	108
12	Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. Journal of Cell Biology, 2013, 200, 301-320.	2.3	68
13	Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. Journal of General Physiology, 2013, 141, i5-i5.	0.9	0
14	Dynamic Exchange of Myosin VI on Endocytic Structures. Journal of Biological Chemistry, 2012, 287, 38637-38646.	1.6	16
15	Molecular roles of Myo1c function in lipid raft exocytosis. Communicative and Integrative Biology, 2012, 5, 508-510.	0.6	10
16	Kinetic properties and smallâ€molecule inhibition of human myosinâ€6. FEBS Letters, 2012, 586, 3208-3214.	1.3	43
17	Autophagy receptors link myosinÂVI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with theÂlysosome. Nature Cell Biology, 2012, 14, 1024-1035.	4.6	238
18	Myo1c regulates lipid raft recycling to control cell spreading, migration and <i>Salmonella</i> invasion. Journal of Cell Science, 2012, 125, 1991-2003.	1.2	77

#	Article	IF	CITATIONS
19	Myosin motor proteins are involved in the final stages of the secretory pathways. Biochemical Society Transactions, 2011, 39, 1115-1119.	1.6	32
20	Mechanism and Specificity of Pentachloropseudilin-mediated Inhibition of Myosin Motor Activity. Journal of Biological Chemistry, 2011, 286, 29700-29708.	1.6	56
21	Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane. Molecular Biology of the Cell, 2011, 22, 54-65.	0.9	76
22	Multifunctional myosin VI has a multitude of cargoes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5927-5928.	3.3	19
23	Myosin VI and Optineurin Are Required for Polarized EGFR Delivery and Directed Migration. Traffic, 2010, 11, 1290-1303.	1.3	44
24	Nucleotide-Dependent Shape Changes in the Reverse Direction Motor, Myosin VI. Biophysical Journal, 2010, 99, 3336-3344.	0.2	9
25	Potential roles of myosin VI in cell motility. Biochemical Society Transactions, 2009, 37, 966-970.	1.6	34
26	Myosin VI: A Multifunctional Motor Protein. , 2008, , 325-352.		3
27	How are the cellular functions of myosin VI regulated within the cell?. Biochemical and Biophysical Research Communications, 2008, 369, 165-175.	1.0	81
28	Rab8â€Optineurinâ€Myosin VI: Analysis of Interactions and Functions in the Secretory Pathway. Methods in Enzymology, 2008, 438, 11-24.	0.4	38
29	Myosin VI Is Required for Targeted Membrane Transport during Cytokinesis. Molecular Biology of the Cell, 2007, 18, 4750-4761.	0.9	48
30	T6BP and NDP52 are myosin VI binding partners with potential roles in cytokine signalling and cell adhesion. Journal of Cell Science, 2007, 120, 2574-2585.	1.2	89
31	Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment. Journal of Cell Science, 2007, 120, 4278-4288.	1.2	122
32	Myosin VI is required for sorting of AP-1B–dependent cargo to the basolateral domain in polarized MDCK cells. Journal of Cell Biology, 2007, 177, 103-114.	2.3	112
33	Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nature Cell Biology, 2007, 9, 176-183.	4.6	194
34	Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. Journal of Cell Biology, 2005, 169, 285-295.	2.3	362
35	Myosin VI: cellular functions and motor properties. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1931-1944.	1.8	38
36	A monomeric myosin VI with a large working stroke. EMBO Journal, 2004, 23, 1729-1738.	3.5	154

#	Article	IF	CITATIONS
37	An open or closed case for the conformation of calponin homology domains on F-actin?. Journal of Muscle Research and Cell Motility, 2004, 25, 351-358.	0.9	19
38	MYOSIN VI: Cellular Functions and Motor Properties. Annual Review of Cell and Developmental Biology, 2004, 20, 649-676.	4.0	167
39	Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell's waltzer mice. EMBO Journal, 2003, 22, 569-579.	3.5	127
40	Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nature Cell Biology, 2003, 5, 980-986.	4.6	307
41	Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nature Genetics, 2003, 33, 487-491.	9.4	375
42	An Atomic Model for Actin Binding by the CH Domains and Spectrin-repeat Modules of Utrophin and Dystrophin. Journal of Molecular Biology, 2003, 329, 15-33.	2.0	69
43	Orientation Changes of the Myosin Light Chain Domain During Filament Sliding in Active and Rigor Muscle. Journal of Molecular Biology, 2002, 318, 1275-1291.	2.0	69
44	Myosin VI Binds to and Localises with Dab2, Potentially Linking Receptor-Mediated Endocytosis and the Actin Cytoskeleton. Traffic, 2002, 3, 331-341.	1.3	216
45	Myosin VI, an Actin Motor for Membrane Traffic and Cell Migration. Traffic, 2002, 3, 851-858.	1.3	75
46	The cell cycle dependent mislocalisation of emerin may contribute to the Emery-Dreifuss muscular dystrophy phenotype. Journal of Cell Science, 2002, 115, 341-354.	1.2	49
47	Myosin VI, a new force in clathrin mediated endocytosis. FEBS Letters, 2001, 508, 295-299.	1.3	63
48	Localization of myosin Va is dependent on the cytoskeletal organization in the cell. Biochemistry and Cell Biology, 2001, 79, 93-106.	0.9	14
49	Sink Plasmodesmata as Gateways for Phloem Unloading. Myosin VIII and Calreticulin as Molecular Determinants of Sink Strength?. Plant Physiology, 2001, 126, 39-46.	2.3	155
50	Myosin-I nomenclature. Journal of Cell Biology, 2001, 155, 703-704.	2.3	71
51	Biochemical characterisation of the actin-binding properties of utrophin. Cytoskeleton, 2000, 46, 116-128.	4.4	32
52	The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure, 2000, 8, 481-491.	1.6	152
53	Structure of the utrophin actin-binding domain bound to F-actin reveals binding by an induced fit mechanism. Journal of Molecular Biology, 2000, 297, 465-480.	2.0	62

#	Article	IF	CITATIONS
55	Cingulin Contains Globular and Coiled-Coil Domains and Interacts with Zo-1, Zo-2, Zo-3, and Myosin. Journal of Cell Biology, 1999, 147, 1569-1582.	2.3	267
56	Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant Journal, 1999, 19, 555-567.	2.8	217
57	Changes at P183 of emerin weaken its protein-protein interactions resulting in X-linked Emery-Dreifuss muscular dystrophy. Human Genetics, 1999, 104, 262-268.	1.8	42
58	Crystal structure of the N-terminal domain of MukB: a protein involved in chromosome partitioning. Structure, 1999, 7, 1181-1187.	1.6	49
59	Crystal structure of the actin-binding region of utrophin reveals a head-to-tail dimer. Structure, 1999, 7, 1539-1546.	1.6	92
60	The 2.0Ã Structure of the Second Calponin Homology Domain from the Actin-binding Region of the Dystrophin Homologue Utrophin. Journal of Molecular Biology, 1999, 285, 1257-1264.	2.0	45
61	Disruption of the utrophin–actin interaction by monoclonal antibodies and prediction of an actin-binding surface of utrophin. Biochemical Journal, 1999, 337, 119-123.	1.7	20
62	Disruption of the utrophin‒actin interaction by monoclonal antibodies and prediction of an actin-binding surface of utrophin. Biochemical Journal, 1999, 337, 119.	1.7	14
63	Interaction of the N-terminal domain of MukB with the bacterial tubulin homologue FtsZ. FEBS Letters, 1998, 430, 278-282.	1.3	29
64	Nucleotide-Dependent Interaction of the N-Terminal Domain of MukB with Microtubules. Journal of Structural Biology, 1998, 124, 303-310.	1.3	17
65	The Localization of Myosin VI at the Golgi Complex and Leading Edge of Fibroblasts and Its Phosphorylation and Recruitment into Membrane Ruffles of A431 Cells after Growth Factor Stimulation. Journal of Cell Biology, 1998, 143, 1535-1545.	2.3	192
66	Molecular Genetic Dissection of Mouse Unconventional Myosin-VA: Head Region Mutations. Genetics, 1998, 148, 1951-1961.	1.2	67
67	Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nature Genetics, 1997, 16, 188-190.	9.4	445
68	Mutation analysis of the mouse myosin VIIA deafness gene. Genes and Function, 1997, 1, 191-203.	2.8	109
69	Low probability of dystrophin and utrophin coiled coil regions forming dimers. Biochemical Society Transactions, 1996, 24, 280S-280S.	1.6	10
70	Conservation within the myosin motor domain: implications for structure and function. Structure, 1996, 4, 969-987.	1.6	224
71	Calmodulin regulation of utrophin actin binding. Biochemical Society Transactions, 1995, 23, 397S-397S.	1.6	8
72	Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature, 1995, 375, 688-691.	13.7	201

#	Article	IF	CITATIONS
73	Intracellular mechanisms involved in the regulation of vascular smooth muscle tone. Canadian Journal of Physiology and Pharmacology, 1995, 73, 565-573.	0.7	53
74	Molecular Dissection of Regulatory Light Chain Function in Vertebrate Smooth Muscle Myosins. , 1995, , 111-130.		0
75	A Myosin-like Protein from a Higher Plant. Journal of Molecular Biology, 1993, 231, 148-154.	2.0	112
76	Hybrid myosin light chains containing a calcium-specific site from troponin C. FEBS Journal, 1992, 204, 85-91.	0.2	5
77	Uncoupling of actin-activated myosin ATPase activity from actin binding by a monoclonal antibody directed against the N-terminus of myosin light chain 1. Biochemistry, 1992, 31, 4090-4095.	1.2	9
78	Chimaeric myosin regulatory light chains: Sub-domain switching experiments to analyse the function of the N-terminal EF hand. Journal of Molecular Biology, 1991, 218, 825-835.	2.0	12
79	A folded (10 S) conformer of myosin from a striated muscle and its implications for regulation of ATPase activity. Journal of Molecular Biology, 1991, 217, 323-335.	2.0	53
80	X-ray diffraction study of the structural changes accompanying phosphorylation of tarantula muscle. Journal of Muscle Research and Cell Motility, 1991, 12, 235-241.	0.9	25
81	Recombinant DNA approaches to study the role of the regulatory light chains (RLC) using scallop myosin as a test system. Journal of Cell Science, 1991, 1991, 55-58.	1.2	9
82	Regulatory and essential light-chain-binding sites in myosin heavy chain subfragment-1 mapped by site-directed mutagenesis. Journal of Molecular Biology, 1989, 208, 199-205.	2.0	34
83	Brush border myosin filament assembly and interaction with actin investigated with monoclonal antibodies. Journal of Muscle Research and Cell Motility, 1988, 9, 306-319.	0.9	11
84	Cingulin, a new peripheral component of tight junctions. Nature, 1988, 333, 272-276.	13.7	490
85	Molecular cloning and sequencing of the chicken smooth muscle myosin regulatory light chain. FEBS Letters, 1988, 234, 49-52.	1.3	30
86	How phosphorylation controls the self-assembly of vertebrate smooth and non-muscle myosins. Biochemical Society Transactions, 1988, 16, 501-503.	1.6	7
87	Polymerization of vertebrate non-muscle and smooth muscle myosins. Journal of Molecular Biology, 1987, 198, 241-252.	2.0	89
88	Effects of light chain phosphorylation and skeletal myosin on the stability of non-muscle myosin filaments. Journal of Molecular Biology, 1987, 198, 253-262.	2.0	15
89	Regulation of non-muscle myosin structure and function. BioEssays, 1987, 7, 155-159.	1.2	74
90	Studies on the structure and conformation of brush border myosin using monoclonal antibodies. FEBS Journal, 1987, 165, 315-325.	0.2	22

#	Article	IF	CITATIONS
91	Regulation in vitro of brush border myosin by light chain phosphorylation. Journal of Molecular Biology, 1986, 188, 369-382.	2.0	59
92	Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins. Nature, 1986, 322, 80-83.	13.7	111
93	Proteolytic fragmentation of brain myosin and localisation of the heavy-chain phosphorylation site. FEBS Journal, 1986, 158, 271-282.	0.2	48
94	Localisation of light chain and actin binding sites on myosin. FEBS Journal, 1986, 161, 25-35.	0.2	53
95	Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature, 1983, 302, 436-439.	13.7	401
96	[33] Phosphorylation of nonmuscle myosin and stabilization of thick filament structure. Methods in Enzymology, 1982, 85 Pt B, 364-370.	0.4	10
97	The role of myosin light chains in regulating actin-myosin interaction. Biochimie, 1981, 63, 255-271.	1.3	65
98	Myosin-linked regulatory systems. Journal of Muscle Research and Cell Motility, 1981, 2, 347-372.	0.9	108
99	Identification of the divalent metal ion binding domain of myosin regulatory light chains using spin-labelling techniques. Journal of Molecular Biology, 1980, 140, 411-433.	2.0	35
100	Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electron paramagnetic resonance spectroscopy. Journal of Molecular Biology, 1979, 130, 317-336.	2.0	83
101	Homologous Metal-Binding Sites of Myosin Regulatory Light Chains Revealed by the Paramagnetic Manganous Ion. Biochemical Society Transactions, 1978, 6, 1262-1264.	1.6	1
102	The regulatory function of the myosin light chains. Trends in Biochemical Sciences, 1976, 1, 281-284.	3.7	1
103	Regulatory light chains in myosins. Journal of Molecular Biology, 1976, 104, 747-775.	2.0	284
104	The regulatory function of the myosin light chains. Trends in Biochemical Sciences, 1976, 1, 281-284.	3.7	11
105	The light chains of scallop myosin as regulatory subunits. Journal of Molecular Biology, 1973, 74, 179-203.	2.0	330
106	Paramyosin and the filaments of molluscan "catch―muscles. Journal of Molecular Biology, 1971, 56, 239-258.	2.0	341
107	Segments from vertebrate smooth muscle myosin rods. Journal of Molecular Biology, 1971, 59, 527-529.	2.0	51
108	Paramyosin and the filaments of molluscan "catch―muscles. Journal of Molecular Biology, 1971, 56, 223-237.	2.0	166

#	Article	IF	CITATIONS
109	Segments from myosin rods. Journal of Molecular Biology, 1970, 47, 605-609.	2.0	50
110	Regulation in molluscan muscles. Journal of Molecular Biology, 1970, 54, 313-326.	2.0	377