T K Sham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11779035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	X-Ray Studies of the Structure and Electronic Behavior of Alkanethiolate-Capped Gold Nanoparticles: The Interplay of Size and Surface Effects. Physical Review Letters, 2003, 90, 245502.	2.9	351
2	Site-Specific Fragmentation of Small Molecules Following Soft-X-Ray Excitation. Physical Review Letters, 1983, 50, 1038-1041.	2.9	275
3	Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence. Nature, 1993, 363, 331-334.	13.7	193
4	Tuning the electronic behavior of Au nanoparticles with capping molecules. Applied Physics Letters, 2002, 81, 736-738.	1.5	165
5	Electronic behavior in alloys: Gold-non-transition-metal intermetallics. Physical Review B, 1979, 19, 539-545.	1.1	139
6	Charge redistribution in Au-Ag alloys from a local perspective. Physical Review B, 1992, 45, 8924-8928.	1.1	102
7	K-edge near-edge x-ray-absorption fine structure of oxygen- and carbon-containing molecules in the gas phase. Physical Review A, 1989, 40, 652-669.	1.0	101
8	Electronic structure and optical properties of silicon nanowires: A study using x-ray excited optical luminescence and x-ray emission spectroscopy. Physical Review B, 2004, 70, .	1.1	96
9	Ion-beam-induced surface damages on tris-(8-hydroxyquinoline) aluminum. Applied Physics Letters, 1999, 75, 1619-1621.	1.5	83
10	X-ray Excited Optical Luminescence Studies of ZnO and Eu-Doped ZnO Nanostructures. Journal of Physical Chemistry C, 2007, 111, 10194-10200.	1.5	81
11	Electronic structure of silicon nanowires: A photoemission and x-ray absorption study. Physical Review B, 2000, 61, 8298-8305.	1.1	72
12	Electronic structure of ordered and disorderedCu3Au: The behavior of the Au 5dbands. Physical Review B, 1990, 41, 11881-11886.	1.1	64
13	Amorphous carbon nanowires investigated by near-edge-x-ray-absorption-fine-structures. Applied Physics Letters, 2001, 79, 3773-3775.	1.5	59
14	Observations on the surface and bulk luminescence of porous silicon. Journal of Applied Physics, 1993, 74, 6335-6340.	1.1	50
15	Electronic structure of Au and Ag overlayers on Ru(001): The behavior of the noble-metaldbands. Physical Review B, 1995, 51, 9979-9984.	1.1	43
16	Germanium nanowires: synthesis, morphology and local structure studies. Nanotechnology, 2006, 17, 2925-2930.	1.3	42
17	Chainlike silicon nanowires: Morphology, electronic structure and luminescence studies. Journal of Applied Physics, 2004, 96, 3447-3451.	1.1	35
18	Phosphorus-doped silicon nanowires studied by near edge x-ray absorption fine structure spectroscopy. Applied Physics Letters, 2002, 80, 3709-3711.	1.5	32

Т К ЅНАМ

#	Article	IF	CITATIONS
19	Nanostructured CdS prepared on porous silicon substrate: Structure, electronic, and optical properties. Journal of Applied Physics, 2002, 91, 6038-6043.	1.1	32
20	Electronic Structures and Optical Properties of 6H- and 3C-SiC Microstructures and Nanostructures from X-ray Absorption Fine Structures, X-ray Excited Optical Luminescence, and Theoretical Studies. Journal of Physical Chemistry C, 2010, 114, 6966-6975.	1.5	32
21	Influence of sample oxidation on the nature of optical luminescence from porous silicon. Applied Physics Letters, 2000, 77, 498-500.	1.5	28
22	X-ray absorption fine structure and electron energy loss spectroscopy study of silicon nanowires at the Si L3,2 edge. Journal of Applied Physics, 2001, 90, 6379-6383.	1.1	25
23	Structure and electronic properties of SiO2/Si multilayer superlattices: SiKedge and L3,2 edge x-ray absorption fine structure study. Journal of Applied Physics, 2002, 92, 3000-3006.	1.1	25
24	Determination of the local structure of luminescent sites in ZnS nanowires using x-ray excited optical luminescence. Applied Physics Letters, 2005, 87, 253105.	1.5	23
25	Ag Nanostructures on a Silicon Nanowire Template:Â Preparation and X-ray Absorption Fine Structure Study at the Si K-edge and Ag L3,2-edge. Chemistry of Materials, 2002, 14, 2519-2526.	3.2	22
26	Multichannel detection x-ray absorption near edge structures study on the structural characteristics of dendrimer-stabilized CdS quantum dots. Journal of Applied Physics, 2001, 90, 2755-2759.	1.1	18
27	Soft x-ray excited optical luminescence: Some recent applications. Review of Scientific Instruments, 2002, 73, 1379-1381.	0.6	17
28	The effect of the surface of SnO2 nanoribbons on their luminescence using x-ray absorption and luminescence spectroscopy. Journal of Chemical Physics, 2008, 128, 144703.	1.2	16
29	2D XAFS-XEOL Spectroscopy – Some recent developments. Journal of Physics: Conference Series, 2013, 425, 132009.	0.3	15
30	Electronic structure and optical properties of CdSxSe1â^'x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations. Journal of Applied Physics, 2014, 116, .	1.1	15
31	One-dimensional Siliconâ^'Cadmium Selenide Heterostructures. Journal of Physical Chemistry C, 2007, 111, 8475-8482.	1.5	14
32	Soft x-ray excited optical luminescence from poly(N-vinylcarbazole). Journal of Applied Physics, 2003, 93, 5191-5195.	1.1	13
33	Time-resolved x-ray-excited optical luminescence characterization of one-dimensional Si–CdSe heterostructures. Applied Physics Letters, 2006, 89, 243102.	1.5	12
34	Zhang and Sham Reply:. Physical Review Letters, 2004, 92, .	2.9	9
35	Effect of substrate surface on the structure and electronic properties of cubic boron nitride films. Journal of Applied Physics, 2006, 100, 014909.	1.1	9
36	Condensation of silicon nanowires from silicon monoxide by thermal evaporation — An X-ray absorption spectroscopy investigation. Canadian Journal of Chemistry, 2007, 85, 695-701.	0.6	8

Т К ЅНАМ

#	Article	IF	CITATIONS
37	XAFS studies of Rh nanostructures on porous silicon. Journal of Synchrotron Radiation, 1999, 6, 529-531.	1.0	7
38	X-ray absorption studies on cubic boron nitride thin films. Journal of Applied Physics, 2007, 101, 013710.	1.1	7
39	Temporal- and Site-Specific Determination of the Origin of the Luminescent Bands in Silicon Nanowires. Journal of Physical Chemistry C, 2008, 112, 13943-13946.	1.5	6
40	Optical Luminescence Yield X-ray Absorption Fine Structures at the Sulphur and Silicon K-edge. Japanese Journal of Applied Physics, 1993, 32, 223.	0.8	4
41	Time Resolved Studies of ZnO (Eu) Nanostructure Luminescence Using Short Synchrotron Radiation Pulses. AIP Conference Proceedings, 2007, , .	0.3	2
42	Synchrotron Radiation Induced Optical Luminescence from Porous Silicon: Recent Observations. Materials Research Society Symposia Proceedings, 1996, 452, 547.	0.1	1
43	SR sheds light on origin of luminescence from porous silicon. Synchrotron Radiation News, 1994, 7, 32-34.	0.2	0