Meiyan Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11778567/publications.pdf

Version: 2024-02-01

		1306789	1719596
7	735	7	7
papers	citations	h-index	g-index
7	7	7	646
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thermal camouflage based on the phase-changing material GST. Light: Science and Applications, 2018, 7, 26.	7.7	255
2	Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy, 2020, 69, 104449.	8.2	164
3	Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- <i>$^1\mu$</i> $^1\mu$ </td <td>1.5</td> <td>128</td>	1.5	128
4	Dielectric metalens for miniaturized imaging systems: progress and challenges. Light: Science and Applications, 2022, 11 , .	7.7	108
5	Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays. Optics Express, 2018, 26, 17772.	1.7	32
6	Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials. Optics Letters, 2018, 43, 1295.	1.7	32
7	Directional and Spectral Control of Thermal Emission and Its Application in Radiative Cooling and Infrared Light Sources. Physical Review Applied, 2020, 13, .	1.5	16