Akio Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11776483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enterohemorrhagic <i>Escherichia coli</i> O157:H7 Produces Tir, Which Is Translocated to the Host Cell Membrane but Is Not Tyrosine Phosphorylated. Infection and Immunity, 1999, 67, 2389-2398.	2.2	211
2	Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO Journal, 2004, 23, 3570-3582.	7.8	137
3	Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Molecular Microbiology, 2002, 33, 1162-1175.	2.5	133
4	Targeting of Enteropathogenic Escherichia coli EspF to Host Mitochondria Is Essential for Bacterial Pathogenesis. Journal of Biological Chemistry, 2005, 280, 2998-3011.	3.4	131
5	Two Enteropathogenic Escherichia coli Type III Secreted Proteins, EspA and EspB, Are Virulence Factors. Journal of Experimental Medicine, 1998, 188, 1907-1916.	8.5	110
6	<i>Bordetella</i> evades the host immune system by inducing IL-10 through a type III effector, BopN. Journal of Experimental Medicine, 2009, 206, 3073-3088.	8.5	101
7	Role of EspB in Experimental Human Enteropathogenic Escherichia coli Infection. Infection and Immunity, 2000, 68, 3689-3695.	2.2	94
8	A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium. Journal of Antibiotics, 2011, 64, 197-203.	2.0	92
9	Segmented Filamentous Bacteria Prevent Colonization of EnteropathogenicEscherichia coliO103 in Rabbits. Journal of Infectious Diseases, 2000, 181, 1027-1033.	4.0	86
10	Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli. Cellular Microbiology, 1999, 1, 7-17.	2.1	83
11	Enteropathogenic Escherichia coli Type III Effectors EspG and EspG2 Alter Epithelial Paracellular Permeability. Infection and Immunity, 2005, 73, 6283-6289.	2.2	74
12	Assembly of the Type III Secretion Apparatus of Enteropathogenic Escherichia coli. Journal of Bacteriology, 2006, 188, 2801-2811.	2.2	58
13	Guadinomines, Type III Secretion System Inhibitors, Produced by Streptomyces sp. K01-0509. Journal of Antibiotics, 2008, 61, 222-229.	2.0	58
14	BopC Is a Novel Type III Effector Secreted by Bordetella bronchiseptica and Has a Critical Role in Type III-dependent Necrotic Cell Death. Journal of Biological Chemistry, 2006, 281, 6589-6600.	3.4	53
15	Differential Expression of Type III Effector BteA Protein Due to IS481 Insertion in Bordetella pertussis. PLoS ONE, 2011, 6, e17797.	2.5	43
16	Guadinomines, Type III Secretion System Inhibitors, Produced by Streptomyces sp. K01-0509. Journal of Antibiotics, 2008, 61, 230-236.	2.0	41
17	BopB is a type III secreted protein in Bordetella bronchiseptica and is required for cytotoxicity against cultured mammalian cells. Cellular Microbiology, 2003, 5, 973-983.	2.1	38
18	Enteropathogenic Escherichia coli , Shigella flexneri , and Listeria monocytogenes Recruit a Junctional Protein, Zonula Occludens-1, to Actin Tails and Pedestals. Infection and Immunity, 2007, 75, 565-573.	2.2	32

Ακίο Αβε

#	Article	IF	CITATIONS
19	The Type III Secreted Protein BopD in Bordetella bronchiseptica Is Complexed with BopB for Pore Formation on the Host Plasma Membrane. Journal of Bacteriology, 2004, 186, 3806-3813.	2.2	31
20	In vivo interactions of rabbit enteropathogenic Escherichia coli O103 with its host: an electron microscopic and histopathologic study. Microbes and Infection, 2000, 2, 5-16.	1.9	28
21	Btc22 chaperone is required for secretion and stability of the type III secreted protein Bsp22 in Bordetella bronchiseptica. FEMS Microbiology Letters, 2012, 331, 144-151.	1.8	26
22	The Type III Secreted Protein BspR Regulates the Virulence Genes in Bordetella bronchiseptica. PLoS ONE, 2012, 7, e38925.	2.5	25
23	DsbA directs efficient expression of outer membrane secretin EscC of the enteropathogenic Escherichia coli type III secretion apparatus. Microbial Pathogenesis, 2008, 44, 151-158.	2.9	24
24	Binding of intimin with Tir on the bacterial surface is prerequisite for the barrier disruption induced by enteropathogenic Escherichia coli. Biochemical and Biophysical Research Communications, 2005, 337, 922-927.	2.1	21
25	BteA Secreted from the Bordetella bronchiseptica Type III Secetion System Induces Necrosis through an Actin Cytoskeleton Signaling Pathway and Inhibits Phagocytosis by Macrophages. PLoS ONE, 2016, 11, e0148387.	2.5	19
26	Iron starvation regulates the type III secretion system in <i>Bordetella bronchiseptica</i> . Microbiology and Immunology, 2012, 56, 356-362.	1.4	18
27	Type-III effectors: Sophisticated bacterial virulence factors. Comptes Rendus - Biologies, 2005, 328, 413-428.	0.2	16
28	The <i>Bordetella</i> type III secretion system: its application to vaccine development. Microbiology and Immunology, 2008, 52, 128-133.	1.4	11
29	<i>Bordetella</i> effector BopN is translocated into host cells via its Nâ€ŧerminal residues. Microbiology and Immunology, 2017, 61, 206-214.	1.4	10
30	Tandem tyrosine phosphosites in the Enteropathogenic <i>Escherichia coli</i> chaperone CesT are required for differential type III effector translocation and virulence. Molecular Microbiology, 2018, 108, 536-550.	2.5	9
31	The Bordetella Secreted Regulator BspR Is Translocated into the Nucleus of Host Cells via Its N-Terminal Moiety: Evaluation of Bacterial Effector Translocation by the Escherichia coli Type III Secretion System. PLoS ONE, 2015, 10, e0135140.	2.5	8
32	EspJ effector in enterohemorrhagicE. colitranslocates into host mitochondria via an atypical mitochondrial targeting signal. Microbiology and Immunology, 2010, 54, 371-9.	1.4	7
33	Functional Analysis of the Type III Secretion System in Enteropathogenic <i>Escherichia coli</i> O157: H45. Microbiology and Immunology, 2000, 44, 857-861.	1.4	6
34	Persistent colonization of non-lymphoid tissue-resident macrophages by <i>Stenotrophomonas maltophilia</i> . International Immunology, 2020, 32, 133-141.	4.0	6
35	Bordetella bronchisepticaBcr4 antagonizes the negative regulatory function of BspR via its role in type III secretion. Microbiology and Immunology, 2018, 62, 743-754.	1.4	5
36	Transcriptional Downregulation of a Type III Secretion System under Reducing Conditions in Bordetella pertussis. Journal of Bacteriology, 2020, 202, .	2.2	5

#	Article	IF	CITATIONS
37	Insights into the structure–activity relationship of a type III secretion system inhibitor, aurodox. Bioorganic and Medicinal Chemistry Letters, 2022, 69, 128779.	2.2	2