
Hyung Jong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11775561/publications.pdf Version: 2024-02-01

HYUNG LONG KIM

#	Article	IF	CITATIONS
1	High-efficiency solution-processed green thermally activated delayed fluorescence OLEDs using a polymer-small molecule mixed host. Polymer Chemistry, 2022, 13, 1824-1830.	3.9	11
2	Novel carbazole-acridine-based hole transport polymer for low turn-on voltage of green quantum dot light-emitting diodes. Polymer Chemistry, 2021, 12, 4714-4721.	3.9	3
3	Nonhalogenated Solvent-Processed High-Performance Indoor Photovoltaics Made of New Conjugated Terpolymers with Optimized Monomer Compositions. ACS Applied Materials & Interfaces, 2021, 13, 13487-13498.	8.0	14
4	Ultraâ€Deepâ€Blue Aggregationâ€Induced Delayed Fluorescence Emitters: Achieving Nearly 16% EQE in Solutionâ€Processed Nondoped and Doped OLEDs with CIE <i>_y</i> Â< 0.1. Advanced Functional Materials, 2021, 31, 2102588.	14.9	69
5	New hole transport styrene polymers bearing highly π-extended conjugated side-chain moieties for high-performance solution-processable thermally activated delayed fluorescence OLEDs. Polymer Chemistry, 2021, 12, 1692-1699.	3.9	5
6	Novel V-Shaped Bipolar Host Materials for Solution-Processed Thermally Activated Delayed Fluorescence OLEDs. ACS Applied Materials & Interfaces, 2021, 13, 49076-49084.	8.0	21
7	Direct Photolithographic Patterning of Colloidal Quantum Dots Enabled by UV-Crosslinkable and Hole-Transporting Polymer Ligands. ACS Applied Materials & Interfaces, 2020, 12, 42153-42160.	8.0	38
8	Rational design, synthesis, and characterization of a photocrosslinkable hole-transporting polymer for high performance solution-processed thermally activated delayed fluorescence OLEDs. Journal of Materials Chemistry C, 2020, 8, 4572-4579.	5.5	19
9	Rational design of a novel isoindigo-based conjugated terpolymer with panchromatic absorption and its application to polymer solar cells. Dyes and Pigments, 2020, 179, 108391.	3.7	8
10	Achievement of high efficiency with extremely low efficiency roll-off in solution-processed thermally activated delayed fluorescence OLEDs manufactured using xanthone-based bipolar host materials. Journal of Materials Chemistry C, 2020, 8, 6780-6787.	5.5	26
11	Colorâ€Tunable Boronâ€Based Emitters Exhibiting Aggregationâ€Induced Emission and Thermally Activated Delayed Fluorescence for Efficient Solutionâ€Processable Nondoped Deepâ€Blue to Skyâ€Blue OLEDs. Advanced Optical Materials, 2020, 8, 1902175.	7.3	66
12	Novel molecular triad exhibiting aggregation-induced emission and thermally activated fluorescence for efficient non-doped organic light-emitting diodes. Chemical Communications, 2019, 55, 9475-9478.	4.1	28
13	Blue-emitting dendritic molecule with dual functionality as host and dopant for solution-processed white OLEDs with red-emitting material. Synthetic Metals, 2019, 258, 116198.	3.9	1
14	2D-σ-2A type cruciform host material with silane core for highly efficient solution-processable green thermally activated delayed fluorescence organic light emitting diodes. Dyes and Pigments, 2019, 167, 120-126.	3.7	13
15	Solution-processed thermally activated delayed fluorescence organic light-emitting diodes using a new polymeric emitter containing non-conjugated cyclohexane units. Polymer Chemistry, 2018, 9, 1318-1326.	3.9	73
16	Highly efficient and highly stable terpolymer-based all-polymer solar cells with broad complementary absorption and robust morphology. Journal of Materials Chemistry A, 2018, 6, 10095-10103.	10.3	29
17	Unconventional Three-Armed Luminogens Exhibiting Both Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Resulting in High-Performing Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 14966-14977.	8.0	53
18	New conjugated regular terpolymers based on diketopyrrolopyrrole-benzodithiophene and their application to thin film transistors and polymer solar cells. Synthetic Metals, 2018, 236, 36-43.	3.9	10

Нуинд Јонд Кім

#	Article	IF	CITATIONS
19	Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1160-1170.	5.5	34
20	Influence of Branched Alkyl Ester-Labeled Side Chains on Specific Chain Arrangement and Charge-Transport Properties of Diketopyrrolopyrrole-Based Conjugated Polymers. ACS Applied Materials & Interfaces, 2018, 10, 40681-40691.	8.0	18
21	High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks. ACS Applied Materials & Interfaces, 2018, 10, 18974-18983.	8.0	66
22	Chromenopyrazole-Based Bipolar Blue Host Materials for Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. Chemistry of Materials, 2018, 30, 5005-5012.	6.7	35
23	Excellent Long-Term Stability of Power Conversion Efficiency in Non-Fullerene-Based Polymer Solar Cells Bearing Tricyanovinylene-Functionalized n-Type Small Molecules. ACS Applied Materials & Interfaces, 2017, 9, 8838-8847.	8.0	46
24	(D) _n –Ïf–(A) _m type partially conjugated block copolymer and its performance in single-component polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 9745-9751.	10.3	37
25	Ambipolar charge transport in a donor–acceptor–donorâ€type conjugated block copolymer and its gateâ€voltageâ€controlled thin film transistor memory. Journal of Polymer Science Part A, 2017, 55, 3223-3235.	2.3	8
26	Diketopyrrolopyrrole-based three-armed conjugated small molecule and their charge transport property. Molecular Crystals and Liquid Crystals, 2016, 635, 80-86.	0.9	0
27	High-performance bipolar host materials for blue TADF devices with excellent external quantum efficiencies. Journal of Materials Chemistry C, 2016, 4, 4512-4520.	5.5	63
28	Importance of varying electron-accepting moieties in regular conjugated terpolymers for use in polymer solar cells. Organic Electronics, 2016, 38, 256-263.	2.6	10
29	Regular terpolymers with fluorinated bithiophene units for high-performing photovoltaic cells. Polymer Chemistry, 2016, 7, 5069-5078.	3.9	17
30	Side-chain engineering of diketopyrrolopyrrole-based copolymer using alkyl ester group for efficient polymer solar cell. Macromolecular Research, 2016, 24, 980-985.	2.4	16
31	New M- and V-shaped perylene diimide small molecules for high-performance nonfullerene polymer solar cells. Chemical Communications, 2016, 52, 8873-8876.	4.1	48
32	A diketopyrrolopyrrole-based regular terpolymer bearing two different π-extended donor units and its application in solar cells. Organic Electronics, 2016, 31, 198-206.	2.6	14
33	Synthesis and Characterization of New Dibenzothiophene-based Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes. Molecular Crystals and Liquid Crystals, 2015, 621, 31-39.	0.9	0
34	Molecular design of large-bandgap host materials and their application to blue phosphorescent organic light-emitting diodes. Organic Electronics, 2015, 26, 218-224.	2.6	7
35	New Bipolar Host Materials for Realizing Blue Phosphorescent Organic Light-Emitting Diodes with High Efficiency at 1000 cd/m ² . ACS Applied Materials & Interfaces, 2014, 6, 19808-19815.	8.0	38