Constantinos Marios Angelopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1177440/publications.pdf Version: 2024-02-01

CONSTANTINOS MARIOS

#	Article	IF	CITATIONS
1	ISUMS: Indoor Space Usage Monitoring System for Sustainable Built Environment Using LoRaWAN. , 2021, , .		1
2	Keeping data at the edge of smart irrigation networks: A case study in strawberry greenhouses. Computer Networks, 2020, 167, 107039.	3.2	39
3	Crowdsourced Edge: A Novel Networking Paradigm for the Collaborative Community. , 2020, , .		1
4	An Architecture for Resilient Intrusion Detection in IoT Networks. , 2020, , .		2
5	An architecture for resilient intrusion detection in ad-hoc networks. Journal of Information Security and Applications, 2020, 53, 102530.	1.8	4
6	A technological framework for data-driven IoT systems: Application on landslide monitoring. Computer Communications, 2020, 154, 298-312.	3.1	13
7	Addressing the Security Gap in IoT: Towards an IoT Cyber Range. Sensors, 2020, 20, 5439.	2.1	11
8	Circularity Principles in Crowdsourced Systems. , 2020, , .		1
9	An Architecture for Blockchain over Edge-enabled IoT for Smart Circular Cities. , 2019, , .		22
10	IDEAL-CITIES - A Trustworthy and Sustainable Framework for Circular Smart Cities. , 2019, , .		3
11	Crowdcloud: a crowdsourced system for cloud infrastructure. Cluster Computing, 2019, 22, 455-470.	3.5	8
12	User Incentivization in Mobile Crowdsensing Systems. Studies in Systems, Decision and Control, 2019, , 259-286.	0.8	0
13	VIVO: A secure, privacy-preserving, and real-time crowd-sensing framework for the Internet of Things. Pervasive and Mobile Computing, 2018, 49, 126-138.	2.1	11
14	Modelled Testbeds: Visualizing and Augmenting Physical Testbeds with Virtual Resources. Advances in Intelligent Systems and Computing, 2018, , 804-812.	0.5	3
15	Crowd-Driven IoT/IoE Ecosystems: A Multidimensional Approach. Internet of Things, 2017, , 341-375.	1.3	3
16	Efficient collection of sensor data via a new accelerated random walk. Concurrency Computation Practice and Experience, 2016, 28, 1796-1811.	1.4	5
17	Wireless Power Transfer in Sensor Networks with Adaptive, Limited Knowledge Protocols. , 2016, , 465-502.		1
18	A Service Based Architecture for Multidisciplinary IoT Experiments with Crowdsourced Resources. Lecture Notes in Computer Science, 2016, , 187-201.	1.0	2

CONSTANTINOS MARIOS

#	Article	IF	CITATIONS
19	Ad-hoc, Mobile, and Wireless Networks. Lecture Notes in Computer Science, 2016, , .	1.0	2
20	Synergistic User \$longleftrightarrow\$ Context Analytics. Advances in Intelligent Systems and Computing, 2016, , 163-172.	0.5	2
21	Strategies for Wireless Recharging in Mobile Ad-Hoc Networks. , 2016, , 305-330.		Ο
22	Improving sensor network performance with wireless energy transfer. International Journal of Ad Hoc and Ubiquitous Computing, 2015, 20, 159.	0.3	20
23	A user-enabled testbed architecture with mobile crowdsensing support for smart, green buildings. , 2015, , .		24
24	Design and evaluation of characteristic incentive mechanisms in Mobile Crowdsensing Systems. Simulation Modelling Practice and Theory, 2015, 55, 95-106.	2.2	17
25	loT Lab: Towards co-design and IoT solution testing using the crowd. , 2015, , .		18
26	Towards a holistic federation of secure crowd-enabled IoT facilities. , 2015, , .		3
27	Traversal Strategies for Wireless Power Transfer in Mobile Ad-Hoc Networks. , 2015, , .		21
28	Characteristic utilities, join policies and efficient incentives in Mobile Crowdsensing Systems. , 2014, , .		7
29	Wireless energy transfer in sensor networks with adaptive, limited knowledge protocols. Computer Networks, 2014, 70, 113-141.	3.2	57
30	Efficient Wireless Recharging in Sensor Networks. , 2013, , .		4
31	Adaptive, limited knowledge wireless recharging in sensor networks. , 2013, , .		1
32	A holistic IPv6 test-bed for smart, green buildings. , 2013, , .		12
33	Measurement Methodology and Tools. Lecture Notes in Computer Science, 2013, , .	1.0	Ο
34	Experimental Performance Evaluation of Sensor-Based Networking for Energy Efficiency in Smart Buildings. Lecture Notes in Computer Science, 2013, , 23-42.	1.0	0
35	Radiation-aware data propagation in wireless sensor networks. , 2012, , .		8
36	Fine-grained in-door localisation with wireless sensor networks. , 2012, , .		1

#	Article	IF	CITATIONS
37	Efficient energy management in wireless rechargeable sensor networks. , 2012, , .		35
38	Experimental evaluation of energy balance algorithms in the SenseWALL sensor network test-bed. , 2011, , .		1
39	Aggregated mobility-based topology inference for fast sensor data collection. Computer Communications, 2011, 34, 1570-1579.	3.1	3
40	Social signal processing. , 2011, , .		0
41	A new random walk for efficient data collection in sensor networks. , 2011, , .		11
42	A smart system for garden watering using wireless sensor networks. , 2011, , .		27
43	Work-in-progress: A new random walk for data collection in sensor networks. , 2011, , .		0
44	Accelerated collection of sensor data by mobility-enabled topology ranks. Journal of Systems and Software, 2010, 83, 2471-2477.	3.3	0
45	Coverage-Adaptive Random Walks for Fast Sensory Data Collection. Lecture Notes in Computer Science, 2010, , 81-94.	1.0	6
46	Ad-Hoc, Mobile and Wireless Networks. Lecture Notes in Computer Science, 2010, , .	1.0	0
47	Fast Sensory Data Collection by Mobility-Based Topology Exploration. , 2009, , .		3
48	Accelerated sensory data collection by greedy or aggregate mobility-based topology ranks. , 2009, , .		1
49	Efficient Intrusion Detection in Ad-Hoc Networks. , 0, , .		3