Guorong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1177422/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Construction of a tandem S-scheme GDY/Cul/CdS-R heterostructure based on morphology-regulated graphdiyne (g-C _{<i>n</i>} H _{2<i>n</i>â^2}) for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 1976-1991.	5.2	58
2	Phosphating MIL-53(Fe) as cocatalyst modified porous NiTiO3 for photocatalytic hydrogen production. Renewable Energy, 2022, 188, 132-144.	4.3	6
3	Graphdiyne based GDY/Cul/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution. 2D Materials, 2022, 9, 025014.	2.0	28
4	The methodologically obtained derivative of ZIF-67 metal–organic frameworks present impressive supercapacitor performance. New Journal of Chemistry, 2022, 46, 7230-7241.	1.4	18
5	CoV-LDH and Zn <i>_x</i> Cd _{1–<i>x</i>} S Solid-Solution Construct 0D/3D S-Scheme Heterojunction for Activated Solar Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 5064-5075.	2.5	4
6	EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2022, 121, 28-39.	5.6	126
7	Construction of CoP/Cu ₃ P/Ni ₂ P Double S-Scheme Heterojunctions for Improved Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2022, 126, 6947-6959.	1.5	22
8	Toilless sulfuration route to enhance the supercapacitor performance of nanoflower-like NiAl-layered double hydroxide. Journal of Electroanalytical Chemistry, 2022, 916, 116368.	1.9	13
9	CoAl LDH in-situ derived CoAlP coupling with Ni2P form S-scheme heterojunction for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 23618-23631.	3.8	25
10	Toilless selenylation route to enhance the supercapacitor conductive performance of nanoflower-like NiAl-layered double hydroxide. Journal of Energy Storage, 2022, 52, 104968.	3.9	11
11	Phosphorus ZIF-67@NiAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production. Applied Surface Science, 2022, 601, 154174.	3.1	23
12	Rational Design of a Core–Shell-Shaped Flowerlike Mn0.05Cd0.95S@NiAl-LDH Structure for Efficient Hydrogen Evolution. Catalysis Letters, 2021, 151, 634-647.	1.4	22
13	Ordered Self-supporting NiV LDHs@P-Nickel foam Nano-array as High-Performance supercapacitor electrode. Journal of Colloid and Interface Science, 2021, 583, 1-12.	5.0	53
14	Phosphatized mild-prepared-NiCo LDHs cabbage-like spheres exhibit excellent performance as a supercapacitor electrode. New Journal of Chemistry, 2021, 45, 251-261.	1.4	25
15	Oxygen-vacancy-rich cobalt–aluminium hydrotalcite structures served as high-performance supercapacitor cathode. Journal of Materials Chemistry C, 2021, 9, 620-632.	2.7	41
16	Regular octahedron Cu-MOFs modifies Mn0.05Cd0.95S nanoparticles to form a S-scheme heterojunction for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 7230-7240.	3.8	51
17	Oxygenâ€vacancyâ€rich hydrated bimetallic chloride for supercapacitor cathode with remarkable enhanced performance. International Journal of Energy Research, 2021, 45, 2899-2911.	2.2	6
18	Enhanced effect of CdS on amorphous Mo15S19 for photocatalytic hydrogen evolution. New Journal of Chemistry, 2021, 45, 3920-3931.	1.4	10

#	Article	IF	CITATIONS
19	Hollow Nanorods and Amorphous Co ₉ S ₈ Quantum Dots Construct S-Scheme Heterojunction for Efficient Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 648-659.	1.5	23
20	Tactfully Assembled CuMOF/CdS S-Scheme Heterojunction for High-Performance Photocatalytic H ₂ Evolution under Visible Light. ACS Applied Energy Materials, 2021, 4, 8550-8562.	2.5	21
21	CdS Reinforced with CoS _X /NiCoâ€LDH Coreâ€shell Coâ€catalyst Demonstrate High Photocatalytic Hydrogen Evolution and Durability in Anhydrous Ethanol. Chemistry - A European Journal, 2021, 27, 16448-16460.	1.7	9
22	Graphdiyne (g-C _{<i>n</i>} H _{2<i>n</i>–2}) Coupled with Co ₃ O ₄ Formed a Zero-Dimensional/Two-Dimensional p–n Heterojunction for Efficient Hydrogen Evolution. Industrial & Engineering Chemistry Research, 2021, 60, 18397-18407.	1.8	15
23	An amorphous nickel boride-modified Zn _x Cd _{1â~x} S solid solution for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2020, 49, 1220-1231.	1.6	41
24	Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renewable Energy, 2020, 162, 535-549.	4.3	83
25	Graphdiyne formed a novel Cul-GD/g-C ₃ N ₄ S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 5088-5101.	2.5	76
26	Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 26733-26745.	3.8	43
27	Phosphated 2D MoS ₂ nanosheets and 3D NiTiO ₃ nanorods for efficient photocatalytic hydrogen evolution. ChemCatChem, 2020, 12, 5492-5503.	1.8	31
28	Amorphous NiCoB nanoalloy modified Mn0.05Cd0.95S for photocatalytic hydrogen evolution. Molecular Catalysis, 2020, 492, 111001.	1.0	24
29	Phosphating 2D CoAl LDH anchored on 3D self-assembled NiTiO ₃ hollow rods for efficient hydrogen evolution. Catalysis Science and Technology, 2020, 10, 2931-2947.	2.1	45
30	Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Molecular Catalysis, 2020, 485, 110832.	1.0	61
31	Distinctive Improved Synthesis and Application Extensions Graphdiyne for Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2020, 12, 1985-1995.	1.8	60
32	Based on amorphous carbon C@ZnxCd1-xS/Co3O4 composite for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 8405-8417.	3.8	45
33	3D layered nano-flower MoSx anchored with CoP nanoparticles form double proton adsorption site for enhanced photocatalytic hydrogen evolution under visible light driven. International Journal of Hydrogen Energy, 2020, 45, 2578-2592.	3.8	48
34	MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 395, 125113.	6.6	143
35	"Ship in a Bottle―design of ZIF-9@CoAl LDH hybrid compound as a high performance asymmetric supercapacitor. New Journal of Chemistry, 2020, 44, 7528-7540.	1.4	21
36	Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors. Journal of Colloid and Interface Science, 2020, 577, 115-126.	5.0	68

GUORONG WANG

#	Article	IF	CITATIONS
37	CoSe2 Clusters as Efficient Co-Catalyst Modified CdS Nanorod for Enhance Visible Light Photocatalytic H2 Evolution. Catalysts, 2019, 9, 616.	1.6	11
38	2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 554, 113-124.	5.0	77
39	A phosphatized NiCo LDH 1D dendritic electrode for high energy asymmetric supercapacitors. Dalton Transactions, 2019, 48, 14853-14863.	1.6	48
40	Unique photocatalytic activities of transition metal phosphide for hydrogen evolution. Journal of Colloid and Interface Science, 2019, 541, 287-299.	5.0	57
41	Insights into the unique role of cobalt phosphide for boosting hydrogen evolution activity based on MIL-125-NH2. International Journal of Hydrogen Energy, 2019, 44, 17909-17921.	3.8	26
42	Effect of Ni(OH)2 on CdS@g-C3N4 Composite for Efficient Photocatalytic Hydrogen Production. Catalysis Letters, 2019, 149, 1174-1185.	1.4	22
43	Orderly designed functional phosphide nanoparticles modified g-C3N4 for efficient photocatalytic hydrogen evolution. Journal of Sol-Gel Science and Technology, 2019, 90, 565-577.	1.1	7
44	Noble-Metal-Free Visible Light Driven Hetero-structural Ni/ZnxCd1â^'xS Photocatalyst for Efficient Hydrogen Production. Catalysis Letters, 2019, 149, 1788-1799.	1.4	27
45	Growth of Zn _{0.5} Cd _{0.5} S/α-Ni(OH) ₂ heterojunction by a facile hydrothermal transformation efficiently boosting photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43, 6411-6421.	1.4	37
46	Rationally Designed Functional Ni ₂ P Nanoparticles as Co–Catalyst Modified CdS@g ₃ N ₄ Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ChemistrySelect, 2019, 4, 3602-3610.	0.7	4
47	An orderly assembled g-C3N4, rGO and Ni2P photocatalyst for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 10316-10327.	3.8	50
48	Photoelectron directional transfer over a g-C ₃ N ₄ /CdS heterojunction modulated with WP for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 4341-4352.	1.6	58
49	Hydroxides Ni(OH) ₂ &Ce(OH) ₃ as a novel hole storage layer for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 17660-17672.	1.6	19
50	Charge separation and electron transfer routes modulated with Co-Mo-P over g-C3N4 photocatalyst. Molecular Catalysis, 2019, 462, 46-55.	1.0	25
51	Function of NiSe2 over CdS nanorods for enhancement of photocatalytic hydrogen production — From preparation to mechanism. Applied Surface Science, 2019, 467-468, 1239-1248.	3.1	11
52	Light-assisted synthesis MoS _x as a noble metal free cocatalyst formed heterojunction CdS/Co ₃ O ₄ photocatalyst for visible light harvesting and spatial charge separation. Dalton Transactions, 2018, 47, 6973-6985.	1.6	61
53	Visible Light Harvesting and Spatial Charge Separation over the Creative Ni/CdS/Co ₃ O ₄ Photocatalyst. Journal of Physical Chemistry C, 2018, 122, 10430-10441.	1.5	75
54	Strategy of nitrogen defects sponge from g-C 3 N 4 nanosheets and Ni-Bi-Se complex modification for efficient dye-sensitized photocatalytic H 2 evolution. Molecular Catalysis, 2018, 453, 1-11.	1.0	22

GUORONG WANG

#	Article	IF	CITATIONS
55	Distinctive organized molecular assemble of MoS ₂ , MOF and Co ₃ O ₄ , for efficient dye-sensitized photocatalytic H ₂ evolution. Catalysis Science and Technology, 2018, 8, 2352-2363.	2.1	63
56	Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. Journal of Colloid and Interface Science, 2018, 532, 287-299.	5.0	72
57	CdS p–n heterojunction co-boosting with Co ₃ O ₄ and Ni-MOF-74 for photocatalytic hydrogen evolution. Dalton Transactions, 2018, 47, 11176-11189.	1.6	70
58	Charge transfer behaviors over MOF-5@g-C 3 N 4 with Ni x Mo 1â^'x S 2 modification. International Journal of Hydrogen Energy, 2018, 43, 9914-9923.	3.8	41
59	Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2018, 462, 213-225.	3.1	129
60	Light harvesting and charge management by Ni4S3 modified metalâ °'organic frameworks and rGO in the process of photocatalysis. Journal of Colloid and Interface Science, 2018, 529, 44-52.	5.0	60
61	Efficient hydrogen production over MOFs (ZIF-67) and g-C3N4 boosted with MoS2 nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 13039-13050.	3.8	91