Viney Saini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11773895/publications.pdf Version: 2024-02-01

VINEV SAINI

#	Article	IF	CITATIONS
1	Acid-free polyaniline:graphene-oxide hole transport layer in organic solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 21640-21650.	2.2	11
2	Quantification of cellular associated graphene and induced surface receptor responses. Nanoscale, 2019, 11, 932-944.	5.6	10
3	Nanocrystalline Cellulose-Derived Doped Carbonaceous Material for Rapid Mineralization of Nitrophenols under Visible Light. ACS Omega, 2018, 3, 8111-8121.	3.5	17
4	The role of surface chemistry in the cytotoxicity profile of graphene. Journal of Applied Toxicology, 2017, 37, 462-470.	2.8	38
5	Synthesis of tunable core–shell nanostructures based on TiO2-graphene architectures and their application in the photodegradation of rhodamine dyes. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 326-333.	2.7	12
6	Performance dependence of SWCNT/n-silicon hybrid solar cells on the charge carrier concentration in silicon substrates. RSC Advances, 2015, 5, 621-627.	3.6	7
7	Comparative Aging Study of Organic Solar Cells Utilizing Polyaniline and PEDOT:PSS as Hole Transport Layers. ACS Applied Materials & Interfaces, 2015, 7, 27667-27675.	8.0	45
8	Tuning the work function of polyaniline via camphorsulfonic acid: an X-ray photoelectron spectroscopy investigation. RSC Advances, 2015, 5, 33-40.	3.6	49
9	Triplet Sensitizer Modification of Poly(3â€hexyl)thiophene (P3HT) for Increased Efficiency in Bulk Heterojunction Photovoltaic Devices. Energy Technology, 2014, 2, 604-611.	3.8	4
10	Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement. Particulate Science and Technology, 2013, 31, 427-442.	2.1	150
11	Solar cells with graphene and carbon nanotubes on silicon. Journal of Experimental Nanoscience, 2013, 8, 565-572.	2.4	9
12	Optimization of the Protonation Level of Polyanilineâ€Based Holeâ€Transport Layers in Bulkâ€Heterojunction Organic Solar Cells. Energy Technology, 2013, 1, 463-470.	3.8	32
13	Photovoltaic Device Performance of Single-Walled Carbon Nanotube and Polyaniline Films on n-Si: Device Structure Analysis. ACS Applied Materials & Interfaces, 2012, 4, 363-368.	8.0	25
14	Structural and optoelectronic properties of P3HT-graphene composites prepared by <i>in situ</i> oxidative polymerization. Journal of Applied Physics, 2012, 112, .	2.5	59
15	Catalytic Conversion of Graphene into Carbon Nanotubes <i>via</i> Gold Nanoclusters at Low Temperatures. ACS Nano, 2012, 6, 501-511.	14.6	24
16	Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions. Journal of Applied Physics, 2011, 109, .	2.5	19
17	Organic/Inorganic Hybrid Photovoltaic Cells Based on Substitutionally Doped Single Wall Carbon Nanotubes. , 2010, , .		0
18	High-aspect ratio and horizontally oriented carbon nanotubes synthesized by RF-cCVD. Diamond and Related Materials, 2010, 19, 67-72.	3.9	12

VINEY SAINI

#	Article	IF	CITATIONS
19	Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Applied Physics Letters, 2010, 96, .	3.3	41
20	Dielectric Behavior of Poly(3-Hexylthiophene)/Carbon Nanotube Composites by Broadband Dielectric Spectroscopy. IEEE Transactions on Industry Applications, 2010, 46, 627-633.	4.9	3
21	Large-scale graphene production by RF-cCVD method. Chemical Communications, 2009, , 4061.	4.1	111
22	Novel synthesis process for ceramic carbon nanotube nanocomposites with nanojunctions. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2826-2833.	1.8	1
23	Synthesis of narrow diameter distribution carbon nanotubes on ZnO supported catalysts. Chemical Physics Letters, 2009, 473, 299-304.	2.6	16
24	The Influence of Fe–Co/MgO Catalyst Composition on the Growth Properties of Carbon Nanotubes. Particulate Science and Technology, 2009, 27, 222-237.	2.1	19
25	Carbon Nanotubes: Synthesis, Properties, and Applications. Particulate Science and Technology, 2009, 27, 107-125.	2.1	118
26	Versatile Catalytic System for the Large-Scale and Controlled Synthesis of Single-Wall, Double-Wall, Multi-Wall, and Graphene Carbon Nanostructures. Chemistry of Materials, 2009, 21, 5491-5498.	6.7	24
27	Light-Harvesting Using High Density <i>p</i> -type Single Wall Carbon Nanotube/ <i>n</i> -type Silicon Heterojunctions. ACS Nano, 2009, 3, 1407-1414.	14.6	141
28	Thermally controlled synthesis of single-wall carbon nanotubes with selective diameters. Journal of Materials Chemistry, 2009, 19, 3004.	6.7	53
29	Electrical, Optical, and Morphological Properties of P3HT-MWNT Nanocomposites Prepared by in Situ Polymerization. Journal of Physical Chemistry C, 2009, 113, 8023-8029.	3.1	97
30	Micro-Raman spectroscopy analysis of catalyst morphology for carbon nanotubes synthesis. Chemical Physics, 2008, 353, 25-31.	1.9	12
31	Surface area and thermal stability effect of the MgO supported catalysts for the synthesis of carbon nanotubes. Journal of Materials Chemistry, 2008, 18, 5738.	6.7	28
32	SOCl 2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions. Applied Physics Letters, 2008, 93, .	3.3	72
33	Comparative Study on Different Carbon Nanotube Materials in Terms of Transparent Conductive Coatings. Langmuir, 2008, 24, 2655-2662.	3.5	102
34	Effects of the Fe–Co interaction on the growth of multiwall carbon nanotubes. Journal of Chemical Physics, 2008, 129, 074712.	3.0	15
35	Does the wall number of carbon nanotubes matter as conductive transparent material?. Applied Physics Letters, 2007, 91, 053115.	3.3	72