Vishal Kandathil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11773864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphitic carbon nitride supported palladium nanocatalyst as an efficient and sustainable catalyst for treating environmental contaminants and hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129116.	4.7	13
2	Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C-C coupling and electrocatalytic application. Frontiers of Chemical Science and Engineering, 2022, 16, 1514-1525.	4.4	3
3	Efficient and recyclable palladium enriched magnetic nanocatalyst for reduction of toxic environmental pollutants. Journal of Environmental Sciences, 2021, 101, 189-204.	6.1	27
4	Palladium-catalyzed denitrogenative cross-coupling of aryl halides with arylhydrazines under mild reaction conditions. Transition Metal Chemistry, 2021, 46, 273-281.	1.4	6
5	A green and sustainable cellulosic-carbon-shielded Pd–MNP hybrid material for catalysis and energy storage applications. Journal of Nanostructure in Chemistry, 2021, 11, 395-407.	9.1	38
6	Waste biomass-derived carbon-supported palladium-based catalyst for cross-coupling reactions and energy storage applications. Applied Surface Science, 2021, 570, 151156.	6.1	19
7	Hexagonal Boron Nitride Supported N-Heterocyclic Carbene-Palladium(II): A New, Efficient and Recyclable Heterogeneous Catalyst for Suzuki–Miyaura Cross-Coupling Reaction. Catalysis Letters, 2021, 151, 1293-1308.	2.6	12
8	DNA as a bioligand supported on magnetite for grafting palladium nanoparticles for crossâ€coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5357.	3.5	12
9	Immobilized N-Heterocyclic Carbene-Palladium(II) Complex on Graphene Oxide as Efficient and Recyclable Catalyst for Suzuki–Miyaura Cross-Coupling and Reduction of Nitroarenes. Catalysis Letters, 2020, 150, 384-403.	2.6	37
10	NHCâ€Pd complex heterogenized on graphene oxide for cross oupling reactions and supercapacitor applications. Applied Organometallic Chemistry, 2020, 34, e5924.	3.5	16
11	Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction. Cellulose, 2020, 27, 3335-3357.	4.9	37
12	Controlled Synthesis of Palladium Nanocubes as an Efficient Nanocatalyst for Suzuki–Miyaura Cross-Coupling and Reduction of <i>p</i> -Nitrophenol. Langmuir, 2020, 36, 5208-5218.	3.5	37
13	From agriculture residue to catalyst support; A green and sustainable cellulose-based dip catalyst for C C coupling and direct arylation. Carbohydrate Polymers, 2019, 223, 115060.	10.2	41
14	Magnetite tethered mesoionic carbeneâ€palladium (II): An efficient and reusable nanomagnetic catalyst for Suzukiâ€Miyaura and Mizorokiâ€Heck cross oupling reactions in aqueous medium. Applied Organometallic Chemistry, 2019, 33, e4846.	3.5	29
15	A new magnetically recyclable heterogeneous palladium(II) as a green catalyst for Suzuki-Miyaura cross-coupling and reduction of nitroarenes in aqueous medium at room temperature. Inorganica Chimica Acta, 2018, 478, 195-210.	2.4	48
16	Magnetic nanoparticleâ€ŧethered Schiff base–palladium(II): Highly active and reusable heterogeneous catalyst for Suzuki–Miyaura crossâ€coupling and reduction of nitroarenes in aqueous medium at room temperature. Applied Organometallic Chemistry, 2018, 32, e4266.	3.5	44
17	Green Synthesis of Palladium Nanoparticles: Applications in Aryl Halide Cyanation and Hiyama Cross-Coupling Reaction Under Ligand Free Conditions. Catalysis Letters, 2018, 148, 1562-1578.	2.6	62
18	A convenient, efficient and reusable N-heterocyclic carbene-palladium(<scp>ii</scp>) based catalyst supported on magnetite for Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions. New lournal of Chemistry, 2017, 41, 9531-9545.	2.8	63