Eric M Moult

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11772813/publications.pdf

Version: 2024-02-01

41 papers

1,678 citations

³⁹³⁹⁸²
19
h-index

35 g-index

41 all docs

41 docs citations

41 times ranked

1394 citing authors

#	Article	IF	CITATIONS
1	Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology, 2015, 122, 2532-2544.	2.5	244
2	ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY. Retina, 2017, 37, 11-21.	1.0	153
3	Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2016, 164, 80-88.	1.7	137
4	TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2016, 36, S118-S126.	1.0	114
5	SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS CHORIOCAPILLARIS ALTERATIONS IN EYES WITH NASCENT GEOGRAPHIC ATROPHY AND DRUSEN-ASSOCIATED GEOGRAPHIC ATROPHY. Retina, 2016, 36, S2-S11.	1.0	111
6	Visualizing the Choriocapillaris Under Drusen: Comparing 1050-nm Swept-Source Versus 840-nm Spectral-Domain Optical Coherence Tomography Angiography. , 2016, 57, OCT585.		95
7	Optical Coherence Tomography Angiography of Dry Age-Related Macular Degeneration. Developments in Ophthalmology, 2016, 56, 91-100.	0.1	90
8	AN AUTOMATIC, INTERCAPILLARY AREA-BASED ALGORITHM FOR QUANTIFYING DIABETES-RELATED CAPILLARY DROPOUT USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2016, 36, S93-S101.	1.0	77
9	QUANTIFICATION OF RETINAL CAPILLARY NONPERFUSION IN DIABETICS USING WIDE-FIELD OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2020, 40, 412-420.	1.0	62
10	Quantifying Microvascular Changes Using OCT Angiography in Diabetic Eyes without Clinical Evidence of Retinopathy. Ophthalmology Retina, 2018, 2, 418-427.	1.2	60
11	The Definition, Rationale, and Effects of Thresholding in OCT Angiography. Ophthalmology Retina, 2017, 1, 435-447.	1.2	43
12	Choriocapillaris Loss in Advanced Age-Related Macular Degeneration. Journal of Ophthalmology, 2018, 2018, 1-6.	0.6	41
13	Optical coherence tomography angiography (OCTA) flow speed mapping technology for retinal diseases. Expert Review of Medical Devices, 2018, 15, 875-882.	1.4	36
14	Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area. Scientific Reports, 2019, 9, 9096.	1.6	32
15	SPATIAL DISTRIBUTION OF CHORIOCAPILLARIS IMPAIRMENT IN EYES WITH CHOROIDAL NEOVASCULARIZATION SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 428-445.	1.0	32
16	Polypoidal Choroidal Vasculopathy on Swept-Source Optical Coherence Tomography Angiography with Variable Interscan Time Analysis. Translational Vision Science and Technology, 2017, 6, 4.	1,1	29
17	High-Speed, Ultrahigh-Resolution Spectral-Domain OCT with Extended Imaging Range Using Reference Arm Length Matching. Translational Vision Science and Technology, 2020, 9, 12.	1.1	29
18	Visualization of Changes in the Choriocapillaris, Choroidal Vessels, and Retinal Morphology After Focal Laser Photocoagulation Using OCT Angiography. , 2016, 57, OCT356.		26

#	Article	IF	Citations
19	En Face Doppler Optical Coherence Tomography Measurement of Total Retinal Blood Flow in Diabetic Retinopathy and Diabetic Macular Edema. JAMA Ophthalmology, 2017, 135, 244.	1.4	25
20	Retinal Nonperfusion Relationship to Arteries or Veins Observed on Widefield Optical Coherence Tomography Angiography in Diabetic Retinopathy. , 2019, 60, 4310.		25
21	Evaluating anesthetic protocols for functional blood flow imaging in the rat eye. Journal of Biomedical Optics, 2017, 22, 016005.	1.4	22
22	Analyzing Relative Blood Flow Speeds in Choroidal Neovascularization Using Variable Interscan Time Analysis OCT Angiography. Ophthalmology Retina, 2018, 2, 306-319.	1.2	19
23	Global Analysis of Macular Choriocapillaris Perfusion in Dry Age-Related Macular Degeneration using Swept-Source Optical Coherence Tomography Angiography. , 2019, 60, 4985.		19
24	Topographic analysis of macular choriocapillaris flow deficits in diabetic retinopathy using swept–source optical coherence tomography angiography. International Journal of Retina and Vitreous, 2020, 6, 6.	0.9	19
25	Analyzing Relative Flow Speeds in Diabetic Retinopathy Using Variable Interscan Time Analysis OCT Angiography. Ophthalmology Retina, 2021, 5, 49-59.	1.2	19
26	A Framework for Multiscale Quantitation of Relationships Between Choriocapillaris Flow Impairment and Geographic Atrophy Growth. American Journal of Ophthalmology, 2020, 214, 172-187.	1.7	18
27	Geometric Perfusion Deficits: A Novel OCT Angiography Biomarker for Diabetic Retinopathy Based on Oxygen Diffusion. American Journal of Ophthalmology, 2021, 222, 256-270.	1.7	17
28	OCT-OCTA segmentation: combining structural and blood flow information to segment Bruch's membrane. Biomedical Optics Express, 2021, 12, 84.	1.5	13
29	Efficient and high accuracy 3-D OCT angiography motion correction in pathology. Biomedical Optics Express, 2021, 12, 125.	1.5	12
30	High speed, long range, deep penetration swept source OCT for structural and angiographic imaging of the anterior eye. Scientific Reports, 2022, 12, 992.	1.6	12
31	Analysis of correlations between local geographic atrophy growth rates and local OCT angiography-measured choriocapillaris flow deficits. Biomedical Optics Express, 2021, 12, 4573.	1.5	11
32	Mean macular intercapillary area in eyes with diabetic macular oedema after <scp>antiâ€</scp> vascular endothelial growth factor therapy and its association with treatment response. Clinical and Experimental Ophthalmology, 2021, 49, 714-723.	1.3	10
33	Local Geographic Atrophy Growth Rates Not Influenced by Close Proximity to Non-Exudative Type 1 Macular Neovascularization. , 2022, 63, 20.		6
34	Growth Modeling for Quantitative, Spatially Resolved Geographic Atrophy Lesion Kinetics. Translational Vision Science and Technology, 2021, 10, 26.	1.1	5
35	MULTISCALE CORRELATION OF MICROVASCULAR CHANGES ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY WITH RETINAL SENSITIVITY IN DIABETIC RETINOPATHY. Retina, 2022, 42, 357-368.	1.0	5
36	Developing a potential retinal OCT biomarker for local growth of geographic atrophy. Biomedical Optics Express, 2020, 11, 5181.	1.5	5

#	Article	IF	CITATIONS
37	Comparing Accuracies of Length-Type Geographic Atrophy Growth Rate Metrics Using Atrophy-Front Growth Modeling. Ophthalmology Science, 2022, 2, 100156.	1.0	2
38	Improved Temporal Calibration of Tracked Ultrasound: An Open-Source Solution. Journal of Medical Robotics Research, 2017, 02, 1750008.	1.0	1
39	FULL-THICKNESS MACULAR HOLE SIZE BY HYPERTRANSMISSION SIGNAL ON SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY. Retina, 2021, 41, 2059-2065.	1.0	1
40	Correction propagation for user-assisted optical coherence tomography segmentation: general framework and application to Bruch's membrane segmentation. Biomedical Optics Express, 2020, 11, 2830.	1.5	1
41	Swept Source OCT Angiography in Different Diseases. , 2017, , 23-36.		0