Qiaoran Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11772660/publications.pdf

Version: 2024-02-01

516215 525886 2,382 27 16 27 citations h-index g-index papers 27 27 27 4207 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A TRIM66/DAX1/Dux axis suppresses the totipotent 2-cell-like state in murine embryonic stem cells. Cell Stem Cell, 2022, 29, 948-961.e6.	5.2	15
2	HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs. Cell Reports, 2022, 40, 111038.	2.9	1
3	A Nodal enhanced micropeptide NEMEP regulates glucose uptake during mesendoderm differentiation of embryonic stem cells. Nature Communications, 2022, 13, .	5.8	7
4	The <scp>tRNA</scp> â€like small noncoding <scp>RNA</scp> masc <scp>RNA</scp> promotes global protein translation. EMBO Reports, 2020, 21, e49684.	2.0	15
5	H3K18ac Primes Mesendodermal Differentiation upon Nodal Signaling. Stem Cell Reports, 2019, 13, 642-656.	2.3	16
6	Authors' Reply to "Translating palbociclib to the clinic for DIPG - What is truly achievable?― EBioMedicine, 2019, 45, 23-24.	2.7	2
7	The HRP3 PWWP domain recognizes the minor groove of double-stranded DNA and recruits HRP3 to chromatin. Nucleic Acids Research, 2019, 47, 5436-5448.	6.5	22
8	Potent anti-tumor efficacy of palbociclib in treatment-na \tilde{A} ve H3.3K27M-mutant diffuse intrinsic pontine glioma. EBioMedicine, 2019, 43, 171-179.	2.7	23
9	Diffuse Intrinsic Pontine Gliomas Exhibit Cell Biological and Molecular Signatures of Fetal Hindbrain-Derived Neural Progenitor Cells. Neuroscience Bulletin, 2019, 35, 216-224.	1.5	10
10	Crosstalk between TGF-& Eta; signaling and epigenome. Acta Biochimica Et Biophysica Sinica, 2018, 50, 60-67.	0.9	32
11	Mechanism of actions of Oncocin, a proline-rich antimicrobial peptide, in early elongation revealed by single-molecule FRET. Protein and Cell, 2018, 9, 890-895.	4.8	9
12	Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Archives of Toxicology, 2018, 92, 469-485.	1.9	26
13	Recurrently deregulated IncRNAs in hepatocellular carcinoma. Nature Communications, 2017, 8, 14421.	5.8	279
14	Role of TRIM33 in Wnt signaling during mesendoderm differentiation. Science China Life Sciences, 2017, 60, 1142-1149.	2.3	10
15	Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors. Nature Communications, 2017, 8, 2070.	5.8	81
16	The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells. Cell Stem Cell, 2017, 20, 70-86.	5.2	121
17	Structural Basis for the Versatile Interactions of Smad7 with Regulator WW Domains in TGF- \hat{l}^2 Pathways. Structure, 2012, 20, 1726-1736.	1.6	93
18	TGFâ€Î² control of stem cell differentiation genes. FEBS Letters, 2012, 586, 1953-1958.	1.3	133

#	Article	IF	Citations
19	A Poised Chromatin Platform for TGF-β Access to Master Regulators. Cell, 2011, 147, 1511-1524.	13.5	251
20	A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes and Development, 2011, 25, 1275-1288.	2.7	207
21	Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF-Î ² Pathways. Cell, 2009, 139, 757-769.	13.5	627
22	Genome-wide Impact of the BRG1 SWI/SNF Chromatin Remodeler on the Transforming Growth Factor \hat{l}^2 Transcriptional Program. Journal of Biological Chemistry, 2008, 283, 1146-1155.	1.6	103
23	Regulation of Translation by Ribosome Shunting through Phosphotyrosine-Dependent Coupling of Adenovirus Protein 100k to Viral mRNAs. Journal of Virology, 2005, 79, 5676-5683.	1.5	44
24	Structural Basis for Competitive Inhibition of eIF4G-Mnk1 Interaction by the Adenovirus 100-Kilodalton Protein. Journal of Virology, 2004, 78, 7707-7716.	1.5	46
25	Tethering of eIF4G to adenoviral mRNAs by viral 100k protein drives ribosome shunting. Genes and Development, 2004, 18, 1997-2009.	2.7	69
26	Selective Degradation of AU-Rich mRNAs Promoted by the p37 AUF1 Protein Isoform. Molecular and Cellular Biology, 2003, 23, 6685-6693.	1.1	134
27	Reexpression of the Major PKC Substrate, SSeCKS, Correlates with the Tumor-Suppressive Effects of SCH51344 on Rat-6/src and Rat-6/ras Fibroblasts but Not on Rat-6/raf Fibroblasts. Annals of the New York Academy of Sciences, 1999, 886, 221-224.	1.8	6