Richard J Tanner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1177193/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. Mutation Research - Reviews in Mutation Research, 2016, 770, 238-261.	5.5	105
2	Search for shape coexistence in194Pb. Journal of Physics G: Nuclear and Particle Physics, 1991, 17, 319-340.	3.6	65
3	The Contribution of Eurados and Cendos to Track Etch Neutron Dosimetry: The Current Status in Europe. Radiation Protection Dosimetry, 1998, 77, 267-304.	0.8	38
4	Operational and dosimetric characteristics of etched-track neutron detectors in routine neutron radiation protection dosimetry. Radiation Measurements, 2005, 40, 549-559.	1.4	38
5	Broken reflection symmetry inXe114. Physical Review C, 1993, 48, 2078-2081.	2.9	31
6	Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. International Journal of Radiation Biology, 2017, 93, 65-74.	1.8	30
7	Individual neutron monitoring in workplaces with mixed neutron/photon radiation. Radiation Protection Dosimetry, 2004, 110, 753-758.	0.8	23
8	A New Design of Neutron Dose Equivalent Survey Instrument. Radiation Protection Dosimetry, 1997, 74, 267-271.	0.8	22
9	Type testing of a head band dosemeter for measuring eye lens dose in terms of HP(3). Radiation Protection Dosimetry, 2013, 157, 430-436.	0.8	21
10	Active Neutron Personal Dosemeters - A Review of Current Status. Radiation Protection Dosimetry, 1999, 86, 107-122.	0.8	20
11	EURADOS intercomparison exercise on MC modeling for the in-vivo monitoring of Am-241 in skull phantoms (Part I). Radiation Physics and Chemistry, 2014, 104, 332-338.	2.8	19
12	Summary of personal neutron dosemeter results obtained within the EVIDOS project. Radiation Protection Dosimetry, 2006, 125, 293-299.	0.8	18
13	Intercomparison on the usage of computational codes in radiation dosimetry. Radiation Protection Dosimetry, 2004, 110, 769-780.	0.8	17
14	EURADOS STRATEGIC RESEARCH AGENDA: VISION FOR DOSIMETRY OF IONISING RADIATION. Radiation Protection Dosimetry, 2016, 168, ncv018.	0.8	16
15	The MCNP-4C2 design of a two element photon/electron dosemeter that uses magnesium/copper/phosphorus doped lithium fluoride. Radiation Protection Dosimetry, 2007, 128, 21-35.	0.8	15
16	Measurements of the high energy neutron component of cosmic radiation fields in aircraft using etched track dosemeters. Radiation Measurements, 2001, 33, 243-253.	1.4	13
17	EURADOS intercomparison exercise on MC modelling for the in-vivo monitoring of AM-241 in skull phantoms (Part II and III) Radiation Physics and Chemistry, 2015, 113, 59-71.	2.8	13
18	THE PHE FORTUITOUS DOSIMETRY CAPABILITY BASED ON OPTICALLY STIMULATED LUMINESCENCE OF MOBILE PHONES. Radiation Protection Dosimetry, 2016, 170, 412-415.	0.8	13

RICHARD J TANNER

#	Article	IF	CITATIONS
19	The NRPB PADC Neutron Personal Dosimetry Service. Radiation Protection Dosimetry, 2001, 96, 191-195.	0.8	12
20	Angle dependence of response characteristics of neutron survey instruments. Radiation Protection Dosimetry, 2004, 110, 187-193.	0.8	11
21	Practical implications of neutron survey instrument performance. Radiation Protection Dosimetry, 2004, 110, 763-767.	0.8	9
22	INTERNATIONAL COMPARISON EXERCISE ON NEUTRON SPECTRA UNFOLDING IN BONNER SPHERES SPECTROMETRY: PROBLEM DESCRIPTION AND PRELIMINARY ANALYSIS. Radiation Protection Dosimetry, 2018, 180, 70-74.	0.8	9
23	The High Energy Neutron Response Characteristics of a Passive Survey Instrument for the Determination of Cosmic Radiation Fields in Aircraft. Radiation Protection Dosimetry, 2002, 100, 519-524.	0.8	8
24	Pitfalls and modelling inconsistencies in computational radiation dosimetry: lessons learnt from the QUADOS intercomparison. Part I: Neutrons and uncertainties. Radiation Protection Dosimetry, 2006, 118, 144-154.	0.8	8
25	The impacts of a new electrochemical etch cycle for the Public Health England neutron personal dosimetry service. Radiation Measurements, 2017, 106, 303-311.	1.4	8
26	Quality assurance for the use of computational methods in dosimetry: activities of EURADOS Working Group 6 â€~Computational Dosimetry'. Journal of Radiological Protection, 2021, 41, 46-58.	1.1	8
27	The measurement using passive dosemeters of the neutron component of aircraft crew dose. Radiation Measurements, 1997, 28, 519-524.	1.4	7
28	QUADOS intercomparison: a summary of photon and charged particle problems. Radiation Protection Dosimetry, 2005, 115, 587-599.	0.8	7
29	Achievements in workplace neutron dosimetry in the last decade: lessons learned from the EVIDOS project. Radiation Protection Dosimetry, 2007, 126, 471-476.	0.8	7
30	A Monte Carlo analysis of possible cell dose enhancement effects by uranium microparticles in photon fields. Radiation Protection Dosimetry, 2011, 143, 177-180.	0.8	7
31	The effects of revised operational dose quantities on the response characteristics of a beta/gamma personal dosemeter. Journal of Radiological Protection, 2019, 39, 399-421.	1.1	7
32	Results of the EURADOS 2017 intercomparison for whole body neutron dosemeters (IC2017n). Radiation Measurements, 2020, 135, 106364.	1.4	7
33	Improved characterisation of the HPA PADC neutron personal dosemeter. Radiation Protection Dosimetry, 2006, 125, 254-257.	0.8	6
34	Analysis of the CONRAD computational problems expressing only stochastic uncertainties: neutrons and protons. Radiation Protection Dosimetry, 2008, 131, 7-14.	0.8	6
35	Analysis of computational problems expressing the overall uncertainties: photons, neutrons and electrons. Radiation Protection Dosimetry, 2008, 131, 15-23.	0.8	6
36	Development of a retrospective/fortuitous accident dosimetry service based on OSL of mobile phones. Radiation Protection Dosimetry, 2015, 164, 89-92.	0.8	6

RICHARD J TANNER

#	Article	IF	CITATIONS
37	Pitfalls and modelling inconsistencies in computational radiation dosimetry: lessons learnt from the QUADOS intercomparison. Part II: Photons, electrons and protons. Radiation Protection Dosimetry, 2006, 118, 155-166.	0.8	5
38	Neutron area survey instrument measurements in the EVIDOS project. Radiation Protection Dosimetry, 2006, 125, 300-303.	0.8	5
39	Measurements with the new PHE neutron survey instrument. Radiation Protection Dosimetry, 2014, 161, 58-61.	0.8	5
40	Introduction to the Special LDLensRad Focus Issue. Radiation Research, 2021, 197, .	1.5	5
41	Modelling of neutron survey instrument performance and experimental validation of those calculated response data. Radiation Protection Dosimetry, 2005, 116, 406-410.	0.8	4
42	Monte Carlo modelling of 90Sr/90Y and 85Kr beta fields for Hp(3) measurements. Radiation Protection Dosimetry, 2014, 158, 115-121.	0.8	4
43	THE RESPONSE OF THE PHE NEUTRON PERSONAL DOSEMETER IN TERMS OF THE PROPOSED ICRU PERSONAL DOSE EQUIVALENT. Radiation Protection Dosimetry, 2018, 180, 17-20.	0.8	4
44	Measurements and Monte Carlo Simulations of 241Am Activities in Three Skull Phantoms: EURADOS-USTUR Collaboration. Health Physics, 2019, 117, 193-201.	0.5	4
45	Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation. Radiation Protection Dosimetry, 2012, 151, 323-343.	0.8	3
46	The effects of a revised operational dose quantity on the response characteristics of neutron survey instruments. Journal of Radiological Protection, 2018, 38, 688-701.	1.1	3
47	A novel design of survey instrument for neutrons. Progress in Nuclear Science and Technology, 2014, 4, 687-691.	0.3	3
48	The use of passive personal neutron dosemeters to determine the neutron dose equivalent component of radiation fields in spacecraft. Radiation Protection Dosimetry, 2004, 110, 405-409.	0.8	2
49	Lessons learnt from the recent EURADOS intercomparisons in computational dosimetry. Radiation Measurements, 2022, 156, 106822.	1.4	2
50	The effect of holder design on the response of the HPA neutron personal dosemeter. Radiation Measurements, 2008, 43, 1128-1131.	1.4	1
51	H p (3) response of the PHE PADC neutron personal dosemeter. Radiation Measurements, 2017, 106, 298-302.	1.4	1
52	Analysis of QUADOS problem on TLD-ALBEDO personal dosemeter responses using discrete ordinates and Monte Carlo methods. Radiation Protection Dosimetry, 2005, 115, 542-547.	0.8	0
53	Individual monitoring for external radiation at accelerator facilities. Radiation Protection Dosimetry, 2011, 146, 395-402.	0.8	0
54	USE OF A SIMPLE THERMALISED NEUTRON FIELD FOR QUALITY ACCEPTANCE OF WHOLE BODY TLDS. Radiation Protection Dosimetry, 2016, 170, 108-112.	0.8	0

#	Article	IF	CITATIONS
55	CALIBRATION OF THERMOLUMINESCENCE AND FILM DOSEMETERS FOR SKIN DOSES FROM HIGH-ACTIVITY MICROPARTICLES. Radiation Protection Dosimetry, 2016, 170, 173-176.	0.8	0
56	EURADOS working group 6, computational dosimetry, a history of promoting good practice via intercomparisons and training. Radiation Measurements, 2022, , 106829.	1.4	0