Luoran Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1177185/publications.pdf

Version: 2024-02-01

99 7,188 44
papers citations h-index

100 100 100 7146
all docs docs citations times ranked citing authors

83

g-index

#	Article	IF	CITATIONS
1	Droplet microfluidics-based biomedical microcarriers. Acta Biomaterialia, 2022, 138, 21-33.	4.1	35
2	Twisted fiber batteries for wearable electronic devices. Smart Materials in Medicine, 2022, 3, 1-3.	3.7	5
3	Programmable Knot Microfibers from Piezoelectric Microfluidics. Small, 2022, 18, e2104309.	5.2	14
4	Cholesteric Cellulose Liquid Crystals with Multifunctional Structural Colors. Advanced Functional Materials, 2022, 32, 2107242.	7.8	61
5	Bioinspired Perovskite Nanocrystalsâ€Integrated Photonic Crystal Microsphere Arrays for Information Security. Advanced Science, 2022, 9, e2105278.	5.6	36
6	Smart Film Actuators for Biomedical Applications. Small, 2022, 18, e2105116.	5.2	15
7	Developing sensor materials for screening intestinal diseases. Materials Futures, 2022, 1, 022401.	3.1	5
8	Hierarchical magnetic nanoparticles for highly effective capture of small extracellular vesicles. Journal of Colloid and Interface Science, 2022, 615, 408-416.	5.0	6
9	Oxygen-carrying microfluidic microcapsules for enhancing chemo-sonodynamic therapy on patient-derived tumor organoid models. Chemical Engineering Journal, 2022, 435, 134871.	6.6	29
10	Colorimetric photonic tongue for metal ions screening. Matter, 2022, 5, 1590-1602.	5.0	8
11	Spiny pollen-based antigen-presenting clusters for promoting T cells expansion. Chemical Engineering Journal, 2022, 437, 135374.	6.6	12
12	Photothermal Responsive Microspheresâ€Triggered Separable Microneedles for Versatile Drug Delivery. Advanced Functional Materials, 2022, 32, .	7.8	27
13	Biomimic Trained Immunityâ€MSCs Delivery Microcarriers for Acute Liver Failure Regeneration. Small, 2022, 18, e2200858.	5.2	18
14	Spatial confinement toward creating artificial living systems. Chemical Society Reviews, 2022, 51, 4075-4093.	18.7	16
15	Microfluidic Generation of Multicomponent Soft Biomaterials. Engineering, 2022, 13, 128-143.	3.2	14
16	Dynamically Responsive Scaffolds from Microfluidic 3D Printing for Skin Flap Regeneration. Advanced Science, 2022, 9, .	5.6	23
17	Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
18	Responsive photonic alginate hydrogel particles for the quantitative detection of alkaline phosphatase. NPG Asia Materials, 2022, 14, .	3.8	15

#	Article	IF	CITATIONS
19	Programmable microfluidic manipulations for biomedical applications. Engineered Regeneration, 2022, 3, 258-261.	3.0	26
20	Biohybrid materials: Structure design and biomedical applications. Materials Today Bio, 2022, 16, 100352.	2.6	5
21	Thriving microfluidic technology. Science Bulletin, 2021, 66, 9-12.	4.3	20
22	Microfluidic droplet templates derived porous patch with anisotropic wettability. Chemical Engineering Journal, 2021, 417, 128073.	6.6	16
23	Living Materials for Life Healthcare. Accounts of Materials Research, 2021, 2, 59-70.	5.9	30
24	Pollens derived magnetic porous particles for adsorption of low-density lipoprotein from plasma. Bioactive Materials, 2021, 6, 1555-1562.	8.6	19
25	Bio-inspired wettability patterns for biomedical applications. Materials Horizons, 2021, 8, 124-144.	6.4	52
26	Living Materials for Regenerative Medicine. Engineered Regeneration, 2021, 2, 96-104.	3.0	43
27	Cheerios Effect Inspired Microbubbles as Suspended and Adhered Oral Delivery Systems. Advanced Science, 2021, 8, 2004184.	5.6	27
28	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
29	Microfluidics for Drug Development: From Synthesis to Evaluation. Chemical Reviews, 2021, 121, 7468-7529.	23.0	95
30	Boston Ivy-Inspired Disc-Like Adhesive Microparticles for Drug Delivery. Research, 2021, 2021, 9895674.	2.8	24
31	Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Applied Materials Today, 2021, 23, 101000.	2.3	28
32	Structural Color Materials from Natural Polymers. Advanced Materials Technologies, 2021, 6, .	3.0	52
33	Suction Cupsâ€Inspired Adhesive Patch with Tailorable Patterns for Versatile Wound Healing. Advanced Science, 2021, 8, e2100201.	5.6	66
34	Microfluidic 3D Printing Responsive Scaffolds with Biomimetic Enrichment Channels for Bone Regeneration. Advanced Functional Materials, 2021, 31, 2105190.	7.8	59
35	Bio-inspired self-replenishing and self-reporting slippery surfaces from colloidal co-assembly templates. Chemical Engineering Journal, 2021, 426, 131641.	6.6	12
36	Microfluidic single-cell coating with defined chemomechanical cues for cell therapy. Science Bulletin, 2021, 66, 2434-2434.	4.3	1

#	Article	IF	CITATIONS
37	Tailoring Materials with Specific Wettability in Biomedical Engineering. Advanced Science, 2021, 8, e2100126.	5.6	52
38	Chinese herb microneedle patch for wound healing. Bioactive Materials, 2021, 6, 3507-3514.	8.6	60
39	Multiplexed CRISPR/Cas9 quantifications based on bioinspired photonic barcodes. Nano Today, 2021, 40, 101268.	6.2	21
40	Porous carbon nanotube microspheres with tailorable surface wettability areas for oil adsorption. Journal of Colloid and Interface Science, 2021, 604, 737-745.	5.0	12
41	Droplet-Templated Synthetic Cells. Matter, 2021, 4, 95-115.	5.0	33
42	Cellular fluidic-based vascular networks for tissue engineering. Engineered Regeneration, 2021, 2, 171-174.	3.0	21
43	Nano-imprinted anisotropic structural color graphene films for cardiomyocytes dynamic displaying. Materials Today, 2021, 51, 117-125.	8.3	19
44	Smart ingestible devices: Orally delivering macromolecules and beyond. Matter, 2021, 4, 3379-3381.	5.0	6
45	Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays. Research, 2021, 2021, 9829068.	2.8	24
46	Inorganic matter can act life-like active transport. Engineered Regeneration, 2021, 2, 227-229.	3.0	0
47	Hierarchically Molecular Imprinted Porous Particles for Biomimetic Kidney Cleaning. Advanced Materials, 2020, 32, e2005394.	11.1	58
48	Dual-Core Prebiotic Microcapsule Encapsulating Probiotics for Metabolic Syndrome. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42586-42594.	4.0	40
49	Structural color barcodes for biodiagnostics. View, 2020, 1, e8.	2.7	13
50	Quantum dots integrated biomass pollens as functional multicolor barcodes. Chemical Engineering Journal, 2020, 395, 125106.	6.6	12
51	Tiny water droplet with huge power. Science Bulletin, 2020, 65, 693-695.	4.3	5
52	Bioinspired structural color patch with anisotropic surface adhesion. Science Advances, 2020, 6, eaax8258.	4.7	150
53	Advances of droplet-based microfluidics in drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 969-979.	2.5	34
54	Surface-textured polymer microspheres generated through interfacial instabilities of microfluidic droplets for cell capture. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 084701.	0.2	3

#	Article	IF	Citations
55	An Interfacial Layer Based on Polymers of Intrinsic Microporosity to Suppress Dendrite Growth on Li Metal Anodes. Chemistry - A European Journal, 2019, 25, 12052-12057.	1.7	24
56	Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Science Bulletin, 2019, 64, 1110-1117.	4.3	98
57	Graphene and Graphene Oxide for Tissue Engineering and Regeneration. , 2019, , 165-185.		22
58	Hollow Colloid Assembled Photonic Crystal Clusters as Suspension Barcodes for Multiplex Bioassays. Small, 2019, 15, e1900056.	5.2	43
59	Bio-inspired intelligent structural color materials. Materials Horizons, 2019, 6, 945-958.	6.4	213
60	Spinning and Applications of Bioinspired Fiber Systems. ACS Nano, 2019, 13, 2749-2772.	7.3	151
61	Gravityâ€Induced Bubble Ripening in Porous Media and Its Impact on Capillary Trapping Stability. Geophysical Research Letters, 2019, 46, 13804-13813.	1.5	17
62	Bioinspired living structural color hydrogels. Science Robotics, 2018, 3, .	9.9	444
63	Microfluidic Generation of Bioinspired Spindleâ€knotted Graphene Microfibers for Oil Absorption. ChemPhysChem, 2018, 19, 1990-1994.	1.0	22
64	Bioâ€Inspired Anisotropic Wettability Surfaces from Dynamic Ferrofluid Assembled Templates. Advanced Functional Materials, 2018, 28, 1705802.	7.8	76
65	Pollen-inspired microparticles with strong adhesion for drug delivery. Applied Materials Today, 2018, 13, 303-309.	2.3	46
66	Design of capillary microfluidics for spinning cell-laden microfibers. Nature Protocols, 2018, 13, 2557-2579.	5.5	152
67	A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes. Advanced Materials Interfaces, 2018, 5, 1800807.	1.9	25
68	Multicolored photonic barcodes from dynamic micromolding. Materials Horizons, 2018, 5, 979-983.	6.4	40
69	Bioinspired Multifunctional Spindleâ€Knotted Microfibers from Microfluidics. Small, 2017, 13, 1600286.	5.2	101
70	Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11933-11941.	4.0	60
71	Composite core-shell microparticles from microfluidics for synergistic drug delivery. Science China Materials, 2017, 60, 543-553.	3.5	74
72	Bioinspired Helical Microfibers from Microfluidics. Advanced Materials, 2017, 29, 1605765.	11.1	222

#	Article	IF	Citations
73	Bio-inspired self-healing structural color hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5900-5905.	3.3	248
74	Emerging Droplet Microfluidics. Chemical Reviews, 2017, 117, 7964-8040.	23.0	1,109
75	Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & amp; Interfaces, 2017, 9, 12914-12918.	4.0	65
76	Antibacterial Structural Color Hydrogels. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38901-38907.	4.0	34
77	Bioinspired Heterogeneous Structural Color Stripes from Capillaries. Advanced Materials, 2017, 29, 1704569.	11.1	123
78	Microfluidic generation of Buddha beads-like microcarriers for cell culture. Science China Materials, 2017, 60, 857-865.	3 . 5	49
79	Microfluidic Lithography of Bioinspired Helical Micromotors. Angewandte Chemie - International Edition, 2017, 56, 12127-12131.	7.2	126
80	Bio-inspired stimuli-responsive graphene oxide fibers from microfluidics. Journal of Materials Chemistry A, 2017, 5, 15026-15030.	5.2	54
81	Microfluidic Lithography of Bioinspired Helical Micromotors. Angewandte Chemie, 2017, 129, 12295-12299.	1.6	37
82	Bioinspired shape-memory graphene film with tunable wettability. Science Advances, 2017, 3, e1700004.	4.7	210
83	Cells Cultured on Core–Shell Photonic Crystal Barcodes for Drug Screening. ACS Applied Materials & Interfaces, 2016, 8, 13840-13848.	4.0	102
84	Tunable Structural Color Surfaces with Visually Selfâ€Reporting Wettability. Advanced Functional Materials, 2016, 26, 7937-7942.	7.8	109
85	Structural color materials in evolution. Materials Today, 2016, 19, 420-421.	8.3	46
86	Boronate affinity molecularly imprinted inverse opal particles for multiple label-free bioassays. Chemical Communications, 2016, 52, 3296-3299.	2.2	53
87	A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood. Nanoscale, 2016, 8, 3841-3847.	2.8	44
88	Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1080-1086.	4.0	119
89	Osmotic pressure-triggered cavitation in microcapsules. Lab on A Chip, 2016, 16, 251-255.	3.1	29
90	Oil Absorption: Microfluidic Generation of Porous Particles Encapsulating Spongy Graphene for Oil Absorption (Small 32/2015). Small, 2015, 11, 3842-3842.	5.2	0

#	Article	IF	CITATIONS
91	Multifunctional inverse opal particles for drug delivery and monitoring. Nanoscale, 2015, 7, 10590-10594.	2.8	93
92	Photonic Crystal Microbubbles as Suspension Barcodes. Journal of the American Chemical Society, 2015, 137, 15533-15539.	6.6	117
93	Microfluidic Generation of Porous Particles Encapsulating Spongy Graphene for Oil Absorption. Small, 2015, 11, 3890-3895.	5.2	60
94	Microfluidic Synthesis of Barcode Particles for Multiplex Assays. Small, 2015, 11, 151-174.	5.2	181
95	Photonic Crystal Encoded Microcarriers for Biomaterial Evaluation. Small, 2014, 10, 88-93.	5.2	62
96	Double emulsions from a capillary array injection microfluidic device. Lab on A Chip, 2014, 14, 3489.	3.1	59
97	Spherical Colloidal Photonic Crystals. Accounts of Chemical Research, 2014, 47, 3632-3642.	7.6	341
98	Bioinspired Multicompartmental Microfibers from Microfluidics. Advanced Materials, 2014, 26, 5184-5190.	11.1	218
99	Microfluidic generation of magnetoresponsive Janus photonic crystal particles. Nanoscale, 2013, 5, 9553.	2.8	96