Susan J Barker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11771619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of gene expression during plant embryogenesis. Cell, 1989, 56, 149-160.	13.5	480
2	The first gene-based map of Lupinus angustifolius L-location of domestication genes and conserved synteny with Medicago truncatula. Theoretical and Applied Genetics, 2006, 113, 225-238.	1.8	116
3	A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular–arbuscular mycorrhizal fungus. New Phytologist, 1999, 144, 507-516.	3.5	106
4	Soybean b-Conglycinin Genes Are Clustered in Several DNA Regions and Are Regulated by Transcriptional and Posttranscriptional Processes. Plant Cell, 1989, 1, 415.	3.1	78
5	A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in Microbiology, 2018, 9, 1226.	1.5	74
6	Multiple genetic loci for zinc uptake and distribution in barley (<i>Hordeum vulgare</i>). New Phytologist, 2009, 184, 168-179.	3.5	60
7	A novel plant–fungus symbiosis benefits the host without forming mycorrhizal structures. New Phytologist, 2014, 201, 1413-1422.	3.5	37
8	Molecular approaches for increasing the micronutrient density in edible portions of food crops. Field Crops Research, 1999, 60, 81-92.	2.3	31
9	Ecto- and arbuscular mycorrhizal symbiosis can induce tolerance to toxic pulses of phosphorus in jarrah (Eucalyptus marginata) seedlings. Mycorrhiza, 2014, 24, 501-509.	1.3	30
10	Position of the reduced mycorrhizal colonisation (Rmc) locus on the tomato genome map. Mycorrhiza, 2007, 17, 311-318.	1.3	28
11	Plant phosphate transporter genes help harness the nutritional benefits of arbuscular mycorrhizal symbiosis. Trends in Plant Science, 2002, 7, 189-190.	4.3	24
12	Root infection of the reduced mycorrhizal colonization (rmc) mutant of tomato reveals genetic interaction between symbiosis and parasitism. Physiological and Molecular Plant Pathology, 2005, 67, 277-283.	1.3	24
13	The reduced mycorrhizal colonisation (rmc) mutation of tomato disrupts five gene sequences including the CYCLOPS/IPD3 homologue. Mycorrhiza, 2013, 23, 573-584.	1.3	20
14	The diversity of arbuscular mycorrhizas of selected AustralianFabaceae. Plant Biosystems, 2008, 142, 420-427.	0.8	16
15	Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. Mycorrhiza, 2016, 26, 401-415.	1.3	13
16	Regeneration selection improves transformation efficiency in narrow-leaf lupin. Plant Cell, Tissue and Organ Culture, 2016, 126, 219-228.	1.2	12
17	An approach to overcoming regeneration recalcitrance in genetic transformation of lupins and other legumes. Plant Cell, Tissue and Organ Culture, 2016, 127, 623-635.	1.2	12
18	Using green fluorescent protein sheds light on Lupinus angustifolius L. transgenic shoot development. Plant Cell, Tissue and Organ Culture, 2016, 127, 665-674.	1.2	11

#	Article	IF	CITATIONS
19	Differential expression of iron deficiencyâ€induced genes in barley genotypes with differing manganese efficiency. Journal of Plant Nutrition, 1996, 19, 407-420.	0.9	8
20	Molecular approaches to understanding mycorrhizal symbioses. Plant and Soil, 2002, 244, 107-116.	1.8	5
21	Molecular approaches to understanding mycorrhizal symbioses. , 2002, , 107-116.		1