Giorgio S Senesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11769864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser-Induced Breakdown Spectroscopy (LIBS) In-Situ: From Portable to Handheld Instrumentation. , 2022, , 465-503.		0
2	Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 175, 106013.	2.9	90
3	Discrimination of Genetically Very Close Accessions of Sweet Orange (Citrus sinensis L. Osbeck) by Laser-Induced Breakdown Spectroscopy (LIBS). Molecules, 2021, 26, 3092.	3.8	5
4	Laser-Induced Breakdown Spectroscopy – A geochemical tool for the 21st century. Applied Geochemistry, 2021, 128, 104929.	3.0	86
5	Multi-elemental analysis of landfill leachates by single and double pulse laser-induced breakdown spectroscopy. Microchemical Journal, 2021, 165, 106125.	4.5	9
6	Laser-Induced Breakdown Spectroscopy applied to environmental systems and their potential contaminants. An overview of advances achieved in the last few years. Trends in Environmental Analytical Chemistry, 2021, 30, e00121.	10.3	22
7	Assessing Laser Cleaning of a Limestone Monument by Fiber Optics Reflectance Spectroscopy (FORS) and Visible and Near-Infrared (VNIR) Hyperspectral Imaging (HSI). Minerals (Basel, Switzerland), 2020, 10, 1052.	2.0	5
8	Quantitative Analysis of Pig Iron from Steel Industry by Handheld Laser-Induced Breakdown Spectroscopy and Partial Least Square (PLS) Algorithm. Applied Sciences (Switzerland), 2020, 10, 8461.	2.5	4
9	Laser-Induced Breakdown Spectroscopy as a Powerful Tool for Distinguishing High- and Low-Vigor Soybean Seed Lots. Food Analytical Methods, 2020, 13, 1691-1698.	2.6	25
10	Macro-classification of meteorites by portable energy dispersive X-ray fluorescence spectroscopy (pED-XRF), principal component analysis (PCA) and machine learning algorithms. Talanta, 2020, 212, 120785.	5.5	34
11	Evaluation of rice varieties using LIBS and FTIR techniques associated with PCA and machine learning algorithms. Applied Optics, 2020, 59, 10043.	1.8	16
12	Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part II. Crop plants and their food derivatives. TrAC - Trends in Analytical Chemistry, 2019, 118, 453-469.	11.4	60
13	Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part I. Soils and fertilizers. TrAC - Trends in Analytical Chemistry, 2019, 115, 70-82.	11.4	80
14	Evaluation of LIBS under controlled atmosphere to quantify cadmium at low concentration in landfill leachates. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	7
15	Elemental and mineralogical imaging of a weathered limestone rock by double-pulse micro-Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 143, 91-97.	2.9	23
16	New insights on the Dronino iron meteorite by double-pulse micro-Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 144, 75-81.	2.9	7
17	Laser-based spectroscopic methods to evaluate the humification degree of soil organic matter in whole soils: a review. Journal of Soils and Sediments, 2018, 18, 1292-1302.	3.0	26
18	Determination of Pb in soils by double-pulse laser-induced breakdown spectroscopy assisted by continuum wave-diode laser-induced fluorescence. Applied Optics, 2018, 57, 8366.	1.8	20

GIORGIO S SENESI

#	Article	IF	CITATIONS
19	Nutritional characterization of healthy and Aphelenchoides besseyi infected soybean leaves by laser-induced breakdown spectroscopy (LIBS). Microchemical Journal, 2018, 141, 118-126.	4.5	19
20	Handheld Laser Induced Breakdown Spectroscopy Instrumentation Applied to the Rapid Discrimination between Iron Meteorites and Meteorâ€Wrongs. Geostandards and Geoanalytical Research, 2018, 42, 607-614.	3.1	20
21	Double-pulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples. Microchemical Journal, 2017, 133, 272-278.	4.5	31
22	Depth profile investigations of surface modifications of limestone artifacts by laser-induced breakdown spectroscopy. Environmental Earth Sciences, 2017, 76, 1.	2.7	16
23	Semiquantitative analysis of mercury in landfill leachates using double-pulse laser-induced breakdown spectroscopy. Applied Optics, 2017, 56, 3730.	2.1	20
24	An Innovative Approach to Meteorite Analysis by Laserâ€induced Breakdown Spectroscopy. Geostandards and Geoanalytical Research, 2016, 40, 533-541.	3.1	26
25	Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review. Analytica Chimica Acta, 2016, 938, 7-17.	5.4	84
26	Phosphorus quantification in fertilizers using laser induced breakdown spectroscopy (LIBS): a methodology of analysis to correct physical matrix effects. Analytical Methods, 2016, 8, 78-82.	2.7	64
27	Elemental Composition Analysis of Plants and Composts Used for Soil Remediation by Laserâ€Induced Breakdown Spectroscopy. Clean - Soil, Air, Water, 2014, 42, 791-798.	1.1	19
28	Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines. Applied Optics, 2014, 53, 2170.	1.8	53
29	Laser-Induced Breakdown Spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks. Earth-Science Reviews, 2014, 139, 231-267.	9.1	115
30	Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS). Journal of Environmental Monitoring, 2011, 13, 1422.	2.1	71
31	Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results. Sensors, 2010, 10, 7434-7468.	3.8	235
32	Increasing cell adhesion on plasma deposited fluorocarbon coatings by changing the surface topography. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 139-149.	3.4	63
33	Nanoâ€5tructured Cellâ€Adhesive and Cellâ€Repulsive Plasmaâ€Deposited Coatings: Chemical and Topographical Effects on Keratinocyte Adhesion. Plasma Processes and Polymers, 2008, 5, 540-551.	3.0	52
34	Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials, 2005, 26, 3831-3841.	11.4	176
35	Homogeneous and Micro-Patterned Plasma-Deposited PEO-Like Coatings for Biomedical Surfaces. Plasma Processes and Polymers, 2004, 1, 63-72.	3.0	103