List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1176676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. Astrophysical Journal, Supplement Series, 2014, 210, 14.	3.0	185
2	Escape fraction of ionizing photons from high-redshift galaxies in cosmological SPH simulations. Monthly Notices of the Royal Astronomical Society, 2011, 412, 411-422.	1.6	163
3	Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations. Astrophysical Journal, Supplement Series, 2005, 160, 1-27.	3.0	160
4	The History of Cosmological Star Formation: Three Independent Approaches and a Critical Test Using the Extragalactic Background Light. Astrophysical Journal, 2006, 653, 881-893.	1.6	99
5	First Identification of 10 kpc [C ii]Â158 μm Halos around Star-forming Galaxies at zÂ=Â5–7. Astrophysical Journal, 2019, 887, 107.	1.6	92
6	Galaxy simulation with dust formation and destruction. Monthly Notices of the Royal Astronomical Society, 2017, 466, 105-121.	1.6	91
7	Abundance of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2004, 348, 421-434.	1.6	90
8	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST. Astrophysical Journal, 2016, 833, 202.	1.6	88
9	Star formation rate and metallicity of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2004, 348, 435-450.	1.6	81
10	Quantitative Signatures of Galactic Superwinds on Lyα Clouds and Metal‣ine Systems. Astrophysical Journal, 2005, 635, 86-99.	1.6	75
11	Cosmological simulation with dust formation and destruction. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4905-4921.	1.6	74
12	Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1606-1620.	1.6	73
13	Star Formation History and Stellar Metallicity Distribution in a Cold Dark Matter Universe. Astrophysical Journal, 2001, 558, 497-504.	1.6	68
14	Distribution of Damped Lyα Absorbers in a ĥ Cold Dark Matter Universe. Astrophysical Journal, 2007, 660, 945-958.	1.6	64
15	Future evolution of nearby large-scale structures in a universe dominated by a cosmological constant. New Astronomy, 2003, 8, 439-448.	0.8	62
16	Massive Galaxies and Extremely Red Objects atz= 1–3 in Cosmological Hydrodynamic Simulations: Nearâ€Infrared Properties. Astrophysical Journal, 2005, 627, 608-620.	1.6	59
17	Is There a Missing Galaxy Problem at High Redshift?. Astrophysical Journal, 2004, 610, 45-50.	1.6	56
18	Photometric properties of Lyman-break galaxies atz= 3 in cosmological SPH simulations. Monthly Notices of the Royal Astronomical Society, 2004, 350, 385-395.	1.6	53

#	Article	IF	CITATIONS
19	Gamma-ray burst rate: high-redshift excess and its possible origins. Monthly Notices of the Royal Astronomical Society, 2011, 417, 3025-3034.	1.6	52
20	Dust scaling relations in a cosmological simulation. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1727-1744.	1.6	52
21	Lyman-α Emitters and Lyman-Break Galaxies at <i>z</i> = 3–6 in Cosmological SPH Simulations. Publication of the Astronomical Society of Japan, 2010, 62, 1455-1472.	1.0	51
22	Multiphase, non-spherical gas accretion on to a black hole. Monthly Notices of the Royal Astronomical Society, 2012, 424, 728-746.	1.6	49
23	IMPACT OF H ₂ -BASED STAR FORMATION MODEL ON THE <i>z</i> ⩾ 6 LUMINOSITY FUNCTION A THE IONIZING PHOTON BUDGET FOR REIONIZATION. Astrophysical Journal, 2013, 766, 94.	NP I.6	48
24	Massive Galaxies in Cosmological Simulations: Ultravioletâ€selected Sample at Redshiftz = 2. Astrophysical Journal, 2005, 618, 23-37.	1.6	47
25	Genus Topology of Structure in the Sloan Digital Sky Survey: Model Testing. Astrophysical Journal, 2008, 675, 16-28.	1.6	44
26	Duty cycle and the increasing star formation history of <i>z</i> ≥ 6 galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 403-414.	1.6	42
27	Effect of radiative transfer on damped Ly and Lyman limit systems in cosmological SPH simulations. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2889-2904.	1.6	42
28	Pairwise velocities of dark matter haloes: a test for the Λ cold dark matter model using the bullet cluster. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3560-3570.	1.6	42
29	Lyman break galaxies at $z = 4\hat{a} \in 6^{\circ}$ in cosmological smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2006, 366, 705-716.	1.6	41
30	EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION. Astrophysical Journal Letters, 2010, 725, L219-L222.	3.0	41
31	Evolution of dust extinction curves in galaxy simulation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 870-885.	1.6	41
32	MOLECULAR HYDROGEN REGULATED STAR FORMATION IN COSMOLOGICAL SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS. Astrophysical Journal, 2014, 780, 145.	1.6	40
33	Evolution of the luminosity function and colours of galaxies in a \hat{I} cold dark matter universe. Monthly Notices of the Royal Astronomical Society, 2001, 327, L10-L14.	1.6	39
34	ON THE FEEDBACK EFFICIENCY OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 707, 823-832.	1.6	39
35	Starbursting [O iii] emitters and quiescent [C ii] emitters in the reionization era. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5541-5556.	1.6	38
36	Effects of metal enrichment and metal cooling in galaxy growth and cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1595-1607.	1.6	36

#	Article	IF	CITATIONS
37	Multicomponent and variable velocity galactic outflow in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2579-2592.	1.6	36
38	Observational properties of simulated galaxies in overdense and average regions at redshifts z ≃ 6–12. Monthly Notices of the Royal Astronomical Society, 2015, 451, 418-432.	1.6	36
39	Galaxy simulation with the evolution of grain size distribution. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	35
40	Galaxy Evolution Studies with the <i>SPace IR Telescope for Cosmology and Astrophysics</i> (<i>SPICA</i>): The Power of IR Spectroscopy. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	32
41	Luminosity Density of Galaxies and Cosmic Star Formation Rate from $\hat{\mathbf{b}}$ Cold Dark Matter Hydrodynamical Simulations. Astrophysical Journal, 2000, 541, 25-36.	1.6	32
42	Lyman Break Galaxies: Their Progenitors and Descendants. Astrophysical Journal, 2002, 564, 73-85.	1.6	32
43	Smoothed particle hydrodynamics simulations of black hole accretion: a step to model black hole feedback in galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 418, 591-611.	1.6	30
44	Effects of cosmological parameters and star formation models on the cosmic star formation history in ΛCDM cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1464-1476.	1.6	28
45	Growth of First Galaxies: Impacts of Star Formation and Stellar Feedback. Astrophysical Journal, 2017, 846, 30.	1.6	28
46	The FRB 121102 Host Is Atypical among Nearby Fast Radio Bursts. Astrophysical Journal Letters, 2019, 884, L26.	3.0	28
47	Supermassive black hole seed formation at high redshifts: long-term evolution of the direct collapse. Monthly Notices of the Royal Astronomical Society, 2016, 456, 500-511.	1.6	27
48	Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3523-3539.	1.6	26
49	Osaka feedback model: isolated disc galaxy simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2632-2655.	1.6	26
50	Populating H2 and CO in galaxy simulation with dust evolution. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1545-1563.	1.6	25
51	Dust properties of Lyman-break galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3073-3084.	1.6	24
52	Direct collapse to supermassive black hole seeds with radiation transfer: cosmological haloes. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2277-2293.	1.6	24
53	Radiative properties of the first galaxies: rapid transition between UV and infrared bright phases. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2629-2643.	1.6	23
54	Detectability of [Cii] 158 μm Emission from Highâ€Redshift Galaxies: Predictions for ALMA andSPICA. Astrophysical Journal, 2006, 647, 60-73.	1.6	22

#	Article	IF	CITATIONS
55	Future evolution of the intergalactic medium in a universe dominated by a cosmological constant. New Astronomy, 2004, 9, 573-583.	0.8	21
56	Environmental Dependence of Galactic Properties Traced by Lyα Forest Absorption: Diversity among Galaxy Populations. Astrophysical Journal, 2021, 909, 117.	1.6	21
57	FOREVER22: galaxy formation in protocluster regions. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4037-4057.	1.6	21
58	The Probability Distribution Function of Light in the Universe: Results from Hydrodynamic Simulations. Astrophysical Journal, 2003, 597, 1-8.	1.6	20
59	ON THE VIRIALIZATION OF DISK WINDS: IMPLICATIONS FOR THE BLACK HOLE MASS ESTIMATES IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2013, 778, 50.	1.6	20
60	The rise and fall of a challenger: the Bullet Cluster in \hat{I}_2 cold dark matter simulations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3030-3037.	1.6	20
61	On the inconsistency between the estimates of cosmic star formation rate and stellar mass density of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1280-1284.	1.6	18
62	Comparison of cosmological simulations and deep submillimetre galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1852-1864.	1.6	18
63	Incidence Rate of GRB-Host DLAs at High Redshift. Astrophysical Journal, 2008, 686, L57-L60.	1.6	17
64	Tracing early structure formation with massive starburst galaxies and their implications for reionization. New Astronomy Reviews, 2006, 50, 29-34.	5.2	15
65	Metallicity measurements of gamma-ray burst and supernova explosion sites: lessons from H ii regions in M31. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2706-2717.	1.6	15
66	Statistical Correlation between the Distribution of Lyα Emitters and Intergalactic Medium H i at zÂâ^1⁄4Â2.2 Mapped by the Subaru/Hyper Suprime-Cam. Astrophysical Journal, 2021, 907, 3.	1.6	15
67	Probing Feedback via IGM tomography and the Lyα Forest with Subaru PFS, TMT/ELT, and JWST. Astrophysical Journal, 2021, 914, 66.	1.6	14
68	LUMINOSITY DISTRIBUTION OF GAMMA-RAY BURST HOST GALAXIES AT REDSHIFT <i>z</i> = 1 IN COSMOLOGICAL SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS: IMPLICATIONS FOR THE METALLICITY DEPENDENCE OF GRBs. Astrophysical Journal, 2011, 726, 88.	1.6	13
69	Redshift space distortion of 21 cm line at 1 < \$z\$ < 5 with cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5389-5399.	1.6	13
70	Direct collapse to supermassive black hole seeds: the critical conditions for suppression of H2 cooling. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4917-4926.	1.6	13
71	Evolution of binary seeds in collapsing protostellar gas clouds. Monthly Notices of the Royal Astronomical Society, 2017, 465, 986-996.	1.6	12
72	Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4252-4262.	1.6	12

#	Article	IF	CITATIONS
73	The AGORA High-resolution Galaxy Simulations Comparison Project. III. Cosmological Zoom-in Simulation of a Milky Way–mass Halo. Astrophysical Journal, 2021, 917, 64.	1.6	12
74	Three-dimensional Distribution Map of H i Gas and Galaxies around an Enormous Lyα Nebula and Three QSOs at zÂ=Â2.3 Revealed by the H i Tomographic Mapping Technique. Astrophysical Journal, 2020, 896, 45.	1.6	12
75	Cosmic Mach Number as a Function of Overdensity and Galaxy Age. Astrophysical Journal, 2001, 553, 513-527.	1.6	11
76	The co-evolution of molecular hydrogen and the grain size distribution in an isolated galaxy. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1461-1476.	1.6	10
77	CONNECTING THE DOTS: TRACKING GALAXY EVOLUTION USING CONSTANT CUMULATIVE NUMBER DENSITY AT 3	1.6	9
78	The Bias from Hydrodynamic Simulations: Mapping Baryon Physics onto Dark Matter Fields. Astrophysical Journal, 2021, 921, 66.	1.6	9
79	Dust diffusion in SPH simulations of an isolated galaxy. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1441-1460.	1.6	8
80	Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3217-3233.	1.6	7
81	Connection between Galaxies and H i in Circumgalactic and Intergalactic Media: Variation according to Galaxy Stellar Mass and Star Formation Activity. Astrophysical Journal, 2021, 911, 98.	1.6	7
82	Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations. Advances in Astronomy, 2010, 2010, 1-5.	0.5	6
83	Catch Me if You Can: Biased Distribution of Lyα-emitting Galaxies according to the Viewing Direction. Astrophysical Journal Letters, 2021, 912, L24.	3.0	6
84	Cross-correlation between damped Lyl $\rm \hat{t}$ systems and Lyman break galaxies in cosmological SPH simulations. Monthly Notices of the Royal Astronomical Society, 2011, 411, 54-64.	1.6	5
85	Mapping the Three-dimensional Lyα Forest Large-scale Structure in Real and Redshift Space*. Astrophysical Journal, 2022, 927, 230.	1.6	5
86	Galaxy Formation and Evolution. Space Science Reviews, 2016, 202, 79-109.	3.7	3
87	DLAs AND GALAXY FORMATION. Modern Physics Letters A, 2007, 22, 2413-2427.	0.5	2
88	Damped Lyman-α Absorbers in Cosmological SPH Simulations: the "Metallicity Problem― Symposium - International Astronomical Union, 2005, 216, 266-273.	0.1	1
89	Galaxy evolution and radiative properties in the early universe: Multi-wavelength analysis in cosmological simulations. Proceedings of the International Astronomical Union, 2019, 15, 55-59.	0.0	1
90	Reconstructing <scp>H i</scp> power spectrum with minimal parameters using the dark matter distribution beyond haloes. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2937-2948.	1.6	1

#	Article	IF	CITATIONS
91	Incidence Rate of GRB-host-DLAs. , 2008, , .		0
92	Large-Scale Outflows from AGN: A Link Between Central Black Holes and Galaxies. Proceedings of the International Astronomical Union, 2009, 5, 354-361.	0.0	0
93	Luminosity Distribution of Gamma-Ray Burst Host Galaxies at Redshift = 1 in Cosmological Simulation. , 2010, , .		0
94	Metallicity of Gamma-Ray Burst Progenitors: Connection between Star Formation and Gamma-Ray Burst Production. , 2010, , .		0
95	High-z galaxy formation, reionization of the universe, and the impact of H[sub 2]-based star formation model. , 2012, , .		0
96	Galaxy formation and chemical enrichment using cosmological hydrodynamic simulations. , 2014, , .		0
97	Overview: Cosmological Framework and the History of Computational Cosmology. World Scientific Series in Astrophysics, 2018, , 1-25.	1.0	0
98	Panchromatic study of the first galaxies in cosmological simulations. Proceedings of the International Astronomical Union, 2019, 15, 240-244.	0.0	0
99	Direct collapse to SMBH seeds in cosmological halos with radiation transfer. Proceedings of the International Astronomical Union, 2019, 15, 289-291.	0.0	0
100	Radiative properties of the first galaxies: Rapid transition from blue to red. Proceedings of the International Astronomical Union, 2019, 15, 261-263.	0.0	0
101	Massive Galaxies at Z = 2 in Cosmological Hydrodynamic Simulations. , 2005, , 319-322.		0
102	Alleviating the scaling problem of cosmological hydrodynamic simulations with HECA. , 2013, , .		0
103	Galaxy Formation and Evolution. Space Sciences Series of ISSI, 2016, , 81-111.	0.0	0
104	Galaxy Formation and Evolution. World Scientific Series in Astrophysics, 2018, , 147-173.	1.0	0