Nicole M Mcneil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11766503/publications.pdf Version: 2024-02-01

NICOLE M MONEU

#	Article	IF	CITATIONS
1	Improving Understanding of Mathematical Equivalence. The Mathematics Teacher, 2021, 114, 16-26.	0.1	2
2	Question Design Affects Students' Senseâ€Making on Mathematics Word Problems. Cognitive Science, 2021, 45, e12960.	1.7	3
3	Hand position affects performance on multiplication tasks. Journal of Numerical Cognition, 2020, 6, 1-21.	1.2	3
4	Improved setâ€size labeling mediates the effect of a counting intervention on children's understanding of cardinality. Developmental Science, 2019, 22, e12819.	2.4	12
5	Consequences of Individual Differences in Children's Formal Understanding of Mathematical Equivalence. Child Development, 2019, 90, 940-956.	3.0	24
6	Comparing Metaâ€analysis and Individual Person Data Analysis Using Raw Data on Children's Understanding of Equivalence. Child Development, 2018, 89, 1983-1995.	3.0	6
7	Perceptual support promotes strategy generation: Evidence from equationÂsolving. British Journal of Developmental Psychology, 2018, 36, 153-168.	1.7	20
8	Arithmetic practice that includes relational words promotes understanding of symbolic equations. Learning and Individual Differences, 2018, 64, 104-112.	2.7	10
9	An integrative data analysis of gender differences in children's understanding of mathematical equivalence. Journal of Experimental Child Psychology, 2017, 163, 140-150.	1.4	14
10	Understanding Childrenâ \in Ms Difficulties with Mathematical Equivalence. , 2017, , 167-195.		6
11	The Role of Non-Numerical Stimulus Features in Approximate Number System Training in Preschoolers from Low-Income Homes. Journal of Cognition and Development, 2016, 17, 737-764.	1.3	20
12	Specific early number skills mediate the association between executive functioning skills and mathematics achievement Developmental Psychology, 2016, 52, 1217-1235.	1.6	24
13	Easy as ABCABC: Abstract Language Facilitates Performance on a ConcreteÂPatterning Task. Child Development, 2015, 86, 927-935.	3.0	48
14	A specific misconception of the equal sign acts as a barrier to children's learning of early algebra. Learning and Individual Differences, 2015, 38, 61-67.	2.7	53
15	Arithmetic practice can be modified to promote understanding of mathematical equivalence Journal of Educational Psychology, 2015, 107, 423-436.	2.9	50
16	Benefits of "concreteness fading―for children's mathematics understanding. Learning and Instruction, 2015, 35, 104-120.	3.2	71
17	Activation of Operational Thinking During Arithmetic Practice Hinders Learning And Transfer. Journal of Problem Solving, 2014, 7, .	0.7	9
18	Concreteness Fading in Mathematics and Science Instruction: a Systematic Review. Educational Psychology Review, 2014, 26, 9-25.	8.4	202

NICOLE M MCNEIL

#	Article	IF	CITATIONS
19	Organization matters: Mental organization of addition knowledge relates to understanding math equivalence in symbolic form. Cognitive Development, 2014, 30, 30-46.	1.3	21
20	A Change–Resistance Account of Children's Difficulties Understanding Mathematical Equivalence. Child Development Perspectives, 2014, 8, 42-47.	3.9	52
21	An eye for relations: eye-tracking indicates long-term negative effects of operational thinking on understanding of math equivalence. Memory and Cognition, 2013, 41, 1079-1095.	1.6	24
22	ANS acuity and mathematics ability in preschoolers from lowâ€income homes: contributions of inhibitory control. Developmental Science, 2013, 16, 136-148.	2.4	254
23	Effects of Perceptually Rich Manipulatives on Preschoolers' Counting Performance: Established Knowledge Counts. Child Development, 2013, 84, 1020-1033.	3.0	48
24	It pays to be organized: Organizing arithmetic practice around equivalent values facilitates understanding of math equivalence Journal of Educational Psychology, 2012, 104, 1109-1121.	2.9	36
25	"Concreteness fading―promotes transfer of mathematical knowledge. Learning and Instruction, 2012, 22, 440-448.	3.2	102
26	Influences of problem format and SES on preschoolers' understanding of approximate addition. Cognitive Development, 2011, 26, 57-71.	1.3	12
27	Benefits of Practicing 4 = 2 + 2: Nontraditional Problem Formats Facilitate Children's Understan Mathematical Equivalence. Child Development, 2011, 82, 1620-1633.	ding of	73
28	Middle School Students' Understanding of Core Algebraic Concepts: Equivalence & Variable. Advances in Mathematics Education, 2011, , 259-276.	0.2	38
29	A is for apple: Mnemonic symbols hinder the interpretation of algebraic expressions Journal of Educational Psychology, 2010, 102, 625-634.	2.9	35
30	Continuity in Representation Between Children and Adults: Arithmetic Knowledge Hinders Undergraduates' Algebraic Problem Solving. Journal of Cognition and Development, 2010, 11, 437-457.	1.3	43
31	Rethinking the Use of Concrete Materials in Learning: Perspectives From Development and Education. Child Development Perspectives, 2009, 3, 137-139.	3.9	53
32	Using Concreteness in Education: Real Problems, Potential Solutions. Child Development Perspectives, 2009, 3, 160-164.	3.9	59
33	Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 2009, 19, 171-184.	3.2	120
34	Limitations to Teaching Children 2 + 2 = 4: Typical Arithmetic Problems Can Hinder Learning of Mathematical Equivalence. Child Development, 2008, 79, 1524-1537.	3.0	74
35	The Importance of Equal Sign Understanding in the Middle Grades. Mathematics Teaching in the Middle School, 2008, 13, 514-519.	0.1	31
36	A Longitudinal Examination of Middle School Students' Understanding of the Equal Sign and Equivalent Equations. Mathematical Thinking and Learning, 2007, 9, 221-247.	1.2	100

NICOLE M MCNEIL

#	Article	IF	CITATIONS
37	U-shaped development in math: 7-year-olds outperform 9-year-olds on equivalence problems Developmental Psychology, 2007, 43, 687-695.	1.6	84
38	Middle-School Students' Understanding of the Equal Sign: The Books They Read Can't Help. Cognition and Instruction, 2006, 24, 367-385.	2.9	112
39	Why Won't You Change Your Mind? Knowledge of Operational Patterns Hinders Learning and Performance on Equations. Child Development, 2005, 76, 883-899.	3.0	203
40	Middle school students' understanding of core algebraic concepts: Equivalence & Variable1. Zentralblatt Für Didaktik Der Mathematik, 2005, 37, 68-76.	0.4	66
41	Knowledge Change as a Function of Mathematics Experience: All Contexts are Not Created Equal. Journal of Cognition and Development, 2005, 6, 285-306.	1.3	90
42	You'll see what you mean: Students encode equations based on their knowledge of arithmetic. Cognitive Science, 2004, 28, 451-466.	1.7	23
43	Divergence of verbal expression and embodied knowledge: Evidence from speech and gesture in children with specific language impairment. Language and Cognitive Processes, 2001, 16, 309-331.	2.2	76
44	Learning mathematics from procedural instruction: Externally imposed goals influence what is learned Journal of Educational Psychology, 2000, 92, 734-744.	2.9	41
45	The Role of Gesture in Children's Comprehension of Spoken Language:Now They Need It, Now They Don't. Journal of Nonverbal Behavior, 2000, 24, 131-150.	1.0	125