
Jue Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1176630/publications.pdf Version: 2024-02-01

hig hui

#	Article	IF	CITATIONS
1	Characterization of a Previously Unidentified Viral Protein in Porcine Circovirus Type 2-Infected Cells and Its Role in Virus-Induced Apoptosis. Journal of Virology, 2005, 79, 8262-8274.	1.5	269
2	The ORF3 Protein of Porcine Circovirus Type 2 Is Involved in Viral Pathogenesis In Vivo. Journal of Virology, 2006, 80, 5065-5073.	1.5	138
3	Induction of Porcine Dermatitis and Nephropathy Syndrome in Piglets by Infection with Porcine Circovirus Type 3. Journal of Virology, 2019, 93, .	1.5	124
4	The ORF3 Protein of Porcine Circovirus Type 2 Interacts with Porcine Ubiquitin E3 Ligase Pirh2 and Facilitates p53 Expression in Viral Infection. Journal of Virology, 2007, 81, 9560-9567.	1.5	77
5	JNK and p38 Mitogen-Activated Protein Kinase Pathways Contribute to Porcine Circovirus Type 2 Infection. Journal of Virology, 2009, 83, 6039-6047.	1.5	69
6	Porcine circovirus type 2 induces the activation of nuclear factor kappa B by lκBα degradation. Virology, 2008, 378, 177-184.	1.1	59
7	Avian Metapneumovirus Subgroup C Infection in Chickens, China. Emerging Infectious Diseases, 2013, 19, 1092-1094.	2.0	49
8	Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85î± subunit of PI3K. Virology, 2011, 417, 211-220.	1.1	46
9	Activation of the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway during Porcine Circovirus Type 2 Infection Facilitates Cell Survival and Viral Replication. Journal of Virology, 2012, 86, 13589-13597.	1.5	43
10	Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways. Virology, 2019, 537, 254-263.	1.1	38
11	Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. Virology, 2009, 386, 203-209.	1.1	33
12	Avian encephalomyelitis virus nonstructural protein 2C induces apoptosis by activating cytochrome c /caspase-9 pathway. Virology, 2004, 318, 169-182.	1.1	31
13	Antigenic and molecular characterization of recent infectious bursal disease virus isolates in China. Virus Genes, 2002, 24, 135-147.	0.7	29
14	Caspase-Dependent Apoptosis Induction via Viral Protein ORF4 of Porcine Circovirus 2 Binding to Mitochondrial Adenine Nucleotide Translocase 3. Journal of Virology, 2018, 92, .	1.5	27
15	Avian Encephalomyelitis Virus Induces Apoptosis Via Major Structural Protein VP3. Virology, 2002, 300, 39-49.	1.1	25
16	Synergetic Contributions of Viral VP1, VP3, and 3C to Activation of the AKT-AMPK-MAPK-MTOR Signaling Pathway for Seneca Valley Virus-Induced Autophagy. Journal of Virology, 2022, 96, JVI0155021.	1.5	25
17	Transcriptional profiles in bursal B-lymphoid DT40 cells infected with very virulent infectious bursal disease virus. Virology Journal, 2017, 14, 7.	1.4	23
18	Infectious bursal disease virus-induced activation of JNK signaling pathway is required for virus replication and correlates with virus-induced apoptosis. Virology, 2011, 420, 156-163.	1.1	22

Jue Liu

#	Article	IF	CITATIONS
19	Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway. Autophagy, 2017, 13, 1709-1721.	4.3	22
20	ITRAQ-based quantitative proteomics reveals the first proteome profiles of piglets infected with porcine circovirus type 3. Journal of Proteomics, 2020, 212, 103598.	1.2	20
21	Regulatory role of ASK1 in porcine circovirus type 2-induced apoptosis. Virology, 2013, 447, 285-291.	1.1	19
22	Inhibition of porcine circovirus type 2 replication in mice by RNA interference. Virology, 2006, 347, 422-433.	1.1	17
23	Cellular proteomic analysis of porcine circovirus type 2 and classical swine fever virus coinfection in porcine kidneyâ€15 cells using isobaric tags for relative and absolute quantitationâ€coupled LCâ€MS/MS. Electrophoresis, 2017, 38, 1276-1291.	1.3	16
24	Immunity Elicited by an Experimental Vaccine Based on Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein in Piglets. PLoS ONE, 2016, 11, e0147432.	1.1	16
25	The Nucleolar Localization Signal of Porcine Circovirus Type 4 Capsid Protein Is Essential for Interaction With Serine-48 Residue of Nucleolar Phosphoprotein Nucleophosmin-1. Frontiers in Microbiology, 2021, 12, 751382.	1.5	15
26	Dynamic Alterations of Gut Microbiota in Porcine Circovirus Type 3-Infected Piglets. Frontiers in Microbiology, 2020, 11, 1360.	1.5	14
27	Characterization and pathogenicity of a naturally reassortant and recombinant infectious bursal disease virus in China. Transboundary and Emerging Diseases, 2022, 69, .	1.3	13
28	Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein Promotes Protective Immune Responses in Mice. PLoS ONE, 2015, 10, e0129617.	1.1	11
29	Involvement of miR-15a in GO/G1 Phase Cell Cycle Arrest Induced by Porcine Circovirus Type 2 Replication. Scientific Reports, 2016, 6, 27917.	1.6	11
30	Seneca Valley Virus 3C ^{pro} Mediates Cleavage and Redistribution of Nucleolin To Facilitate Viral Replication. Microbiology Spectrum, 2022, , e0030422.	1.2	11
31	The VP1 protein of avian encephalomyelitis virus is a major host-protective immunogen that serves as diagnostic potential. Journal of Virological Methods, 2008, 149, 56-62.	1.0	10
32	Nucleolar Phosphoprotein NPM1 Interacts With Porcine Circovirus Type 3 Cap Protein and Facilitates Viral Replication. Frontiers in Microbiology, 2021, 12, 679341.	1.5	9
33	Seneca Valley virus 3C ^{pro} degrades heterogeneous nuclear ribonucleoprotein A1 to facilitate viral replication. Virulence, 2021, 12, 3125-3136.	1.8	9
34	Reduction of infectious bursal disease virus replication in cultured cells by proteasome inhibitors. Virus Genes, 2007, 35, 719-727.	0.7	8
35	Identification and Genome Characterization of the First Sicinivirus Isolate from Chickens in Mainland China by Using Viral Metagenomics. PLoS ONE, 2015, 10, e0139668.	1.1	8
36	Membrane-association properties of avian encephalomyelitis virus protein 3A. Virology, 2004, 321, 297-306.	1.1	7

Jue Liu

#	Article	IF	CITATIONS
37	Fowl Adenovirus Serotype 4 Induces Hepatic Steatosis via Activation of Liver X Receptor-α. Journal of Virology, 2021, 95, .	1.5	7
38	Age-dependence of hypervirulent fowl adenovirus type 4 pathogenicity in specific-pathogen-free chickens. Poultry Science, 2021, 100, 101238.	1.5	7
39	Proteome Analysis in a Mammalian Cell Line Reveals that PLK2 Is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses, 2020, 12, 375.	1.5	6
40	Porcine Circovirus Type 3 Enters Into PK15 Cells Through Clathrin- and Dynamin-2-Mediated Endocytosis in a Rab5/Rab7 and pH-Dependent Fashion. Frontiers in Microbiology, 2021, 12, 636307.	1.5	6
41	Development of a non-radioactive digoxigenin cDNA probe for the detection of avian encephalomyelitis virus. Avian Pathology, 2008, 37, 187-191.	0.8	5
42	Host immune response to infection with porcine circoviruses. Animal Diseases, 2021, 1, .	0.6	5
43	Involvement of adaptor proteins in clathrin-mediated endocytosis of virus entry. Microbial Pathogenesis, 2021, 161, 105278.	1.3	5
44	Contribution of DEAD-Box RNA Helicase 21 to the Nucleolar Localization of Porcine Circovirus Type 4 Capsid Protein. Frontiers in Microbiology, 2022, 13, 802740.	1.5	5
45	Reconstruction of the Evolutionary Origin, Phylodynamics, and Phylogeography of the Porcine Circovirus Type 3. Frontiers in Microbiology, 2022, 13, .	1.5	5
46	Avian Metapneumovirus Subgroup C Induces Mitochondrial Antiviral Signaling Protein Degradation through the Ubiquitin-Proteasome Pathway. Viruses, 2021, 13, 1990.	1.5	4
47	Interaction Network of Porcine Circovirus Type 3 and 4 Capsids with Host Proteins. Viruses, 2022, 14, 939.	1.5	3
48	Interaction of Nucleolin with the Fusion Protein of Avian Metapneumovirus Subgroup C Contributes to Viral Replication. Viruses, 2022, 14, 1402.	1.5	1