
Murray Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11765637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Classical Nuclear Localization Signals: Definition, Function, and Interaction with Importin α*. Journal of Biological Chemistry, 2007, 282, 5101-5105.	1.6	966
2	Molecular mechanism of the nuclear protein import cycle. Nature Reviews Molecular Cell Biology, 2007, 8, 195-208.	16.1	777
3	Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure. Journal of Molecular Biology, 1975, 98, 293-304.	2.0	701
4	Structural Basis for the Interaction between FxFG Nucleoporin Repeats and Importin-β in Nuclear Trafficking. Cell, 2000, 102, 99-108.	13.5	428
5	The 14-fold periodicity in α-tropomyosin and the interaction with actin. Journal of Molecular Biology, 1976, 103, 271-298.	2.0	385
6	Structural Biology and Regulation of Protein Import into the Nucleus. Journal of Molecular Biology, 2016, 428, 2060-2090.	2.0	204
7	GLFG and FxFG Nucleoporins Bind to Overlapping Sites on Importin-β. Journal of Biological Chemistry, 2002, 277, 50597-50606.	1.6	203
8	Structural basis for nuclear import complex dissociation by RanGTP. Nature, 2005, 435, 693-696.	13.7	197
9	Structural basis for the nuclear import of the human androgen receptor. Journal of Cell Science, 2008, 121, 957-968.	1.2	193
10	Structural basis for the assembly of a nuclear export complex. Nature, 2004, 432, 872-877.	13.7	188
11	Karyopherin flexibility in nucleocytoplasmic transport. Current Opinion in Structural Biology, 2006, 16, 237-244.	2.6	186
12	How nematode sperm crawl. Journal of Cell Science, 2002, 115, 367-384.	1.2	180
13	Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP 1 1Edited by I. B. Holland. Journal of Molecular Biology, 1999, 293, 579-593.	2.0	171
14	Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the ras-family GTPase ran 1 1Edited by I. B. Holland. Journal of Molecular Biology, 1998, 277, 635-646.	2.0	152
15	How nematode sperm crawl. Journal of Cell Science, 2002, 115, 367-84.	1.2	147
16	Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO Journal, 2002, 21, 2843-2853.	3.5	146
17	The 1.6 Ã Resolution Crystal Structure of Nuclear Transport Factor 2 (NTF2). Journal of Molecular Biology, 1996, 260, 422-431.	2.0	141
18	Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO Journal, 2005, 24, 3681-3689.	3.5	134

#	Article	IF	CITATIONS
19	Sequence repeats in α-tropomyosin. Journal of Molecular Biology, 1975, 98, 281-291.	2.0	129
20	Intermediate filament structure and assembly. Current Opinion in Cell Biology, 1993, 5, 3-11.	2.6	128
21	Sus1, Cdc31, and the Sac3 CID Region Form a Conserved Interaction Platform that Promotes Nuclear Pore Association and mRNA Export. Molecular Cell, 2009, 33, 727-737.	4.5	128
22	Structural Basis for the High-affinity Binding of Nucleoporin Nup1p to the Saccharomyces cerevisiae Importin-β Homologue, Kap95p. Journal of Molecular Biology, 2005, 349, 515-525.	2.0	124
23	Separate Binding Sites on Nuclear Transport Factor 2 (NTF2) for GDP-Ran and the Phenylalanine-rich Repeat Regions of Nucleoporins p62 and Nsp1p. Journal of Molecular Biology, 1996, 263, 517-524.	2.0	121
24	Nuclear export of mRNA. Trends in Biochemical Sciences, 2010, 35, 609-617.	3.7	120
25	Ratcheting mRNA out of the Nucleus. Molecular Cell, 2007, 25, 327-330.	4.5	119
26	Reconstitution In Vitro of the Motile Apparatus from the Amoeboid Sperm of Ascaris Shows That Filament Assembly and Bundling Move Membranes. Cell, 1996, 84, 105-114.	13.5	116
27	Electron microscopy of frozen-hydrated biological material. Nature, 1986, 319, 631-636.	13.7	112
28	Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Research, 2012, 40, 4562-4573.	6.5	111
29	Tropomyosin: Evidence for no stagger between chains. FEBS Letters, 1975, 53, 5-7.	1.3	108
30	mRNA Export from Mammalian Cell Nuclei Is Dependent on GANP. Current Biology, 2010, 20, 25-31.	1.8	108
31	Acting like Actin. Journal of Cell Biology, 2000, 149, 7-12.	2.3	104
32	Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import. FEBS Letters, 2001, 498, 145-149.	1.3	101
33	Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. Journal of Molecular Biology, 1986, 192, 831-851.	2.0	97
34	Intermediate filaments: structure, assembly and molecular interactions. Current Opinion in Cell Biology, 1990, 2, 91-100.	2.6	97
35	Fourteen actin-binding sites on tropomyosin?. Nature, 1975, 257, 331-333.	13.7	90
36	Structural Basis for Vertebrate Filamin Dimerization. Structure, 2005, 13, 111-119.	1.6	90

#	Article	IF	CITATIONS
37	Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nature Structural and Molecular Biology, 2012, 19, 328-336.	3.6	90
38	Polyadenylation and nuclear export of mRNAs. Journal of Biological Chemistry, 2019, 294, 2977-2987.	1.6	90
39	Quantitative Structural Analysis of Importin-β Flexibility: Paradigm for Solenoid Protein Structures. Structure, 2010, 18, 1171-1183.	1.6	89
40	Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO Journal, 2003, 22, 5358-5369.	3.5	86
41	Computer image processing of electron micrographs of biological structures with helical symmetry. Journal of Electron Microscopy Technique, 1988, 9, 325-358.	1.1	83
42	Structure of Limulus telson muscle thick filaments. Journal of Molecular Biology, 1981, 153, 781-790.	2.0	81
43	Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7200-7205.	3.3	81
44	Periodic charge distribution in the intermediate filament proteins desmin and vimentin. Journal of Molecular Biology, 1982, 162, 693-698.	2.0	79
45	Novel Binding of the Mitotic Regulator TPX2 (Target Protein for Xenopus Kinesin-like Protein 2) to Importin-α. Journal of Biological Chemistry, 2010, 285, 17628-17635.	1.6	79
46	The troponin binding region of tropomyosin. Evidence for a site near residues 197 to 127. Journal of Molecular Biology, 1976, 106, 1017-1022.	2.0	72
47	Crystalline order to high resolution in the sheath of Methanospirillum hungatei: A cross-beta structure. Journal of Molecular Biology, 1985, 183, 509-515.	2.0	71
48	2.5 Ã Resolution Crystal Structure of the Motile Major Sperm Protein (MSP) ofAscaris suum. Journal of Molecular Biology, 1996, 263, 284-296.	2.0	70
49	Nuclear protein import is decreased by engineered mutants of nuclear transport factor 2 (NTF2) that do not bind GDP-Ran. Journal of Molecular Biology, 1997, 272, 716-730.	2.0	70
50	Structure of tropomyosin at 9 Ãngstroms resolution. Journal of Molecular Biology, 1992, 227, 441-452.	2.0	69
51	A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. ELife, 2016, 5, .	2.8	69
52	Simulation of cell motility that reproduces the force–velocity relationship. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9141-9146.	3.3	68
53	Molecular interactions between the importin α/β heterodimer and proteins involved in vertebrate nuclear protein import. Journal of Molecular Biology, 1997, 266, 722-732.	2.0	67
54	Promiscuous Binding of Karyopherin β 1 Modulates FG Nucleoporin Barrier Function and Expedites NTF2 Transport Kinetics. Biophysical Journal, 2015, 108, 918-927.	0.2	67

#	Article	IF	CITATIONS
55	The structure of the Q69L mutant of GDP-ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2) 1 1Edited by I. B. Holland. Journal of Molecular Biology, 1998, 284, 1517-1527.	2.0	66
56	The Molecular Mechanism of Transport of Macromolecules Through Nuclear Pore Complexes. Traffic, 2000, 1, 448-456.	1.3	66
57	Functional Significance of the Interaction between the mRNA-binding Protein, Nab2, and the Nuclear Pore-associated Protein, Mlp1, in mRNA Export. Journal of Biological Chemistry, 2008, 283, 27130-27143.	1.6	66
58	Structure of the C-terminal FG-nucleoporin binding domain of Tap/NXF1. Nature Structural Biology, 2002, 9, 247-251.	9.7	65
59	Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP. Nucleic Acids Research, 2014, 42, 5059-5071.	6.5	64
60	Structure of magnesium paracrystals of α-tropomyosin. Journal of Molecular Biology, 1976, 103, 251-269.	2.0	63
61	Dissecting the Interactions between NTF2, RanGDP, and the Nucleoporin XFXFG Repeats. Journal of Biological Chemistry, 2000, 275, 5874-5879.	1.6	63
62	Structural predictions for the central domain of dystrophin. FEBS Letters, 1990, 262, 87-92.	1.3	62
63	Structural Basis for the Interaction Between the Tap/NXF1 UBA Domain and FG Nucleoporins at 1Ã Resolution. Journal of Molecular Biology, 2003, 326, 849-858.	2.0	61
64	Localized Depolymerization of the Major Sperm Protein Cytoskeleton Correlates with the Forward Movement of the Cell Body in the Amoeboid Movement of Nematode Sperm. Journal of Cell Biology, 1999, 146, 1087-1096.	2.3	59
65	Structural basis for binding the TREX2 complex to nuclear pores, GAL1 localisation and mRNA export. Nucleic Acids Research, 2014, 42, 6686-6697.	6.5	59
66	Structural basis for dimerization of the Dictyostelium gelation factor (ABP120) rod. Nature Structural Biology, 1999, 6, 836-841.	9.7	57
67	Structure of the regular surface layer of Spirillum putridiconchylium. Journal of Molecular Biology, 1980, 137, 1-8.	2.0	55
68	Solution NMR Study of the Interaction Between NTF2 and Nucleoporin FxFG Repeats. Journal of Molecular Biology, 2003, 333, 587-603.	2.0	55
69	Molecular interactions in myosin assembly. Journal of Molecular Biology, 1992, 226, 7-13.	2.0	51
70	Dissection of the Ascaris Sperm Motility Machinery Identifies Key Proteins Involved in Major Sperm Protein-based Amoeboid Locomotion. Molecular Biology of the Cell, 2003, 14, 5082-5088.	0.9	50
71	Structural basis for <scp>P</scp> an3 binding to <scp>P</scp> an2 and its function in <scp>mRNA</scp> recruitment and deadenylation. EMBO Journal, 2014, 33, 1514-1526.	3.5	50
72	Structure of the N-Terminal Mlp1-Binding Domain of the Saccharomyces cerevisiae mRNA-Binding Protein, Nab2. Journal of Molecular Biology, 2008, 376, 1048-1059.	2.0	47

#	Article	IF	CITATIONS
73	Nematode sperm locomotion. Current Opinion in Cell Biology, 1995, 7, 13-17.	2.6	44
74	A 48 kDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. Journal of Cell Science, 2003, 116, 2655-2663.	1.2	44
75	Porcine platelet tropomyosin. Journal of Molecular Biology, 1981, 153, 147-167.	2.0	43
76	The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Research, 2015, 43, 1883-1893.	6.5	43
77	Cross-bridge movement during muscle contraction. Nature, 1976, 261, 606-608.	13.7	42
78	Constant and variable regions in glycoprotein hormone beta subunit sequences: Implications for receptor binding specificity. Journal of Molecular Biology, 1977, 116, 175-179.	2.0	42
79	Introduction to the computer image processing of electron micrographs of two-dimensionally ordered biological structures. Journal of Electron Microscopy Technique, 1988, 9, 301-324.	1.1	42
80	Development of Cellâ€Permeable, Nonâ€Helical Constrained Peptides to Target a Key Protein–Protein Interaction in Ovarian Cancer. Angewandte Chemie - International Edition, 2017, 56, 524-529.	7.2	41
81	The structure and interactions of components of nuclear envelopes from <i>Xenopus</i> oocyte germinal vesicles observed by heavy metal shadowing. Journal of Cell Science, 1988, 90, 409-423.	1.2	41
82	Insights into the Molecular Mechanism of Nuclear Trafficking Using Nuclear Transport Factor 2 (NTF2) Cell Structure and Function, 2000, 25, 217-225.	0.5	39
83	Structural biology of the PCI-protein fold. Bioarchitecture, 2012, 2, 118-123.	1.5	35
84	Structural Basis for Polyadenosine-RNA Binding by Nab2 Zn Fingers and Its Function in mRNA Nuclear Export. Structure, 2012, 20, 1007-1018.	1.6	35
85	1.9 Ã resolution crystal structure of the Saccharomyces cerevisiae ran-binding protein mog1p 1 1Edited by I. B. Holland. Journal of Molecular Biology, 2000, 299, 213-223.	2.0	34
86	Structure of α-tropomyosin magnesium paracrystals. Journal of Molecular Biology, 1981, 148, 411-425.	2.0	33
87	Structural basis for amoeboid motility in nematode sperm. Nature Structural Biology, 1998, 5, 184-189.	9.7	33
88	Structural basis for the higher Ca 2+ -activation of the regulated actin-activated myosin ATPase observed with Dictyostelium/Tetrahymena actin chimeras 1 1Edited by A. Klug. Journal of Molecular Biology, 2000, 296, 579-595.	2.0	33
89	Crystallization and Initial X-Ray Diffraction Characterization of Complexes of FxFG Nucleoporin Repeats with Nuclear Transport Factors. Journal of Structural Biology, 2000, 131, 240-247.	1.3	33
90	How the assembly dynamics of the nematode major sperm protein generate amoeboid cell motility. International Review of Cytology, 2001, 202, 1-34.	6.2	33

#	Article	IF	CITATIONS
91	STRUCTURAL BIOLOGY: Nuclear Trafficking. Science, 2003, 302, 1513-1514.	6.0	32
92	Kap95p Binding Induces the Switch Loops of RanGDP to Adopt the GTP-Bound Conformation: Implications for Nuclear Import Complex Assembly Dynamics. Journal of Molecular Biology, 2008, 383, 772-782.	2.0	32
93	Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1. Journal of Biological Chemistry, 2010, 285, 3850-3856.	1.6	32
94	Hydrostatic Pressure Shows That Lamellipodial Motility in Ascaris Sperm Requires Membrane-associated Major Sperm Protein Filament Nucleation and Elongation. Journal of Cell Biology, 1998, 140, 367-375.	2.3	31
95	The Motile Major Sperm Protein (MSP) fromAscaris suumis a Symmetric Dimer in Solution. Journal of Molecular Biology, 1996, 260, 251-260.	2.0	30
96	Structural basis for the assembly and disassembly of mRNA nuclear export complexes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 578-592.	0.9	30
97	Electron microscopic location of protein thiol residues. Nature, 1978, 274, 184-186.	13.7	29
98	The myosin filament. Journal of Molecular Biology, 1981, 153, 381-392.	2.0	29
99	Length of myosin rod and its proteolytic fragments determined by electron microscopy. FEBS Letters, 1984, 168, 75-78.	1.3	29
100	Association of gold-labelled nucleoplasmin with the centres of ring components of Xenopus oocyte nuclear pore complexes. Journal of Molecular Biology, 1990, 213, 575-582.	2.0	29
101	Molecular architecture of the rod domain of the Dictyostelium gelation factor (ABP120). Journal of Molecular Biology, 1999, 291, 1017-1023.	2.0	29
102	NTF2 monomer-dimer equilibrium 1 1Edited by B. Holland. Journal of Molecular Biology, 2001, 314, 465-477.	2.0	29
103	Switching affinities in nuclear trafficking. , 1999, 6, 301-304.		28
104	2.6Ã Resolution Crystal Structure of Helices of the Motile Major Sperm Protein (MSP) of Caenorhabditis elegans. Journal of Molecular Biology, 2002, 319, 491-499.	2.0	28
105	Dephosphorylation of Major Sperm Protein (MSP) Fiber Protein 3 by Protein Phosphatase 2A during Cell Body Retraction in the MSP-based Amoeboid Motility of Ascaris Sperm. Molecular Biology of the Cell, 2009, 20, 3200-3208.	0.9	28
106	Expression and characterization of human lamin C. FEBS Letters, 1990, 268, 301-305.	1.3	27
107	Molecular basis of myosin assembly:coiled-coil interactions and the role of charge periodicities. Journal of Cell Science, 1991, 1991, 7-10.	1.2	27
108	Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores. Proceedings of the United States of America, 2013, 110, E1584-93.	3.3	27

#	Article	IF	CITATIONS
109	Functional Analysis of the Hydrophobic Patch on Nuclear Transport Factor 2 Involved in Interactions with the Nuclear Porein Vivo. Journal of Biological Chemistry, 2001, 276, 38820-38829.	1.6	26
110	Interaction between Ran and Mog1 Is Required for Efficient Nuclear Protein Import. Journal of Biological Chemistry, 2001, 276, 41255-41262.	1.6	26
111	A Ser/Thr Kinase Required for Membrane-associated Assembly of the Major Sperm Protein Motility Apparatus in the Amoeboid Sperm of Ascaris. Molecular Biology of the Cell, 2007, 18, 1816-1825.	0.9	26
112	Electrostatic Interactions Involving the Extreme C Terminus of Nuclear Export Factor CRM1 Modulate Its Affinity for Cargo. Journal of Biological Chemistry, 2011, 286, 29325-29335.	1.6	26
113	Structural Characterization of the Chaetomium thermophilum TREX-2 Complex and its Interaction with the mRNA Nuclear Export Factor Mex67:Mtr2. Structure, 2015, 23, 1246-1257.	1.6	26
114	Nuclear pore structure and function. Seminars in Cell Biology, 1992, 3, 267-277.	3.5	25
115	Structure of MFP2 and its Function in Enhancing MSP Polymerization in Ascaris Sperm Amoeboid Motility. Journal of Molecular Biology, 2005, 347, 583-595.	2.0	25
116	Coordination of Hpr1 and Ubiquitin Binding by the UBA Domain of the mRNA Export Factor Mex67. Molecular Biology of the Cell, 2007, 18, 2561-2568.	0.9	25
117	Role of Major Sperm Protein (MSP) in the Protrusion and Retraction of Ascaris Sperm. International Review of Cell and Molecular Biology, 2012, 297, 265-293.	1.6	25
118	GANP enhances the efficiency of mRNA nuclear export in mammalian cells. Nucleus, 2010, 1, 393-396.	0.6	24
119	Structural basis for nuclear import selectivity of pioneer transcription factor SOX2. Nature Communications, 2021, 12, 28.	5.8	24
120	The Motile Major Sperm Protein (MSP) of Ascaris suum Forms Filaments Constructed from Two Helical Subfilaments. Journal of Molecular Biology, 1994, 243, 60-71.	2.0	23
121	Crystallization and Preliminary X-Ray Diffraction Analysis of Nuclear Transport Factor 2. Journal of Structural Biology, 1996, 116, 326-329.	1.3	23
122	Structural Requirements for the Ubiquitin-associated Domain of the mRNA Export Factor Mex67 to Bind Its Specific Targets, the Transcription Elongation THO Complex Component Hpr1 and Nucleoporin FXFG Repeats. Journal of Biological Chemistry, 2009, 284, 17575-17583.	1.6	22
123	Structural basis for the dimerization of Nab2 generated by RNA binding provides insight into its contribution to both poly(A) tail length determination and transcript compaction in Saccharomyces cerevisiae. Nucleic Acids Research, 2017, 45, 1529-1538.	6.5	22
124	Structure–function relationships in the Nab2 polyadenosineâ€RNA binding Zn finger protein family. Protein Science, 2019, 28, 513-523.	3.1	22
125	The molecular mechanism of translocation through the nuclear pore complex is highly conserved. Journal of Cell Science, 2002, 115, 2997-3005.	1.2	22
126	Chain register in myosin rod. FEBS Letters, 1982, 140, 210-212.	1.3	21

8

#	Article	IF	CITATIONS
127	Mutational Uncoupling of the Role of Sus1 in Nuclear Pore Complex Targeting of an mRNA Export Complex and Histone H2B Deubiquitination. Journal of Biological Chemistry, 2009, 284, 12049-12056.	1.6	21
128	Domain organization within the nuclear export factor Mex67:Mtr2 generates an extended mRNA binding surface. Nucleic Acids Research, 2015, 43, 1927-1936.	6.5	21
129	The myosin filament. Journal of Molecular Biology, 1981, 145, 421-440.	2.0	20
130	Engineered mutants in the switch II loop of ran define the contribution made by key residues to the interaction with nuclear transport factor 2 (NTF2) and the role of this interaction in nuclear protein import. Journal of Molecular Biology, 1999, 289, 565-577.	2.0	18
131	The role of filament-packing dynamics in powering amoeboid cell motility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5390-5395.	3.3	18
132	The molecular mechanism of translocation through the nuclear pore complex is highly conserved. Journal of Cell Science, 2002, 115, 2997-3005.	1.2	18
133	Structural basis for the molecular recognition of polyadenosine RNA by Nab2 Zn fingers. Nucleic Acids Research, 2014, 42, 672-680.	6.5	17
134	Nuclear magnetic resonance evidence for a flexible region at the C-terminus of α-tropomyosin. Journal of Molecular Biology, 1983, 166, 219-225.	2.0	16
135	Structure and Function of the TREX-2 Complex. Sub-Cellular Biochemistry, 2019, 93, 461-470.	1.0	15
136	Function of the Nuclear Transport Machinery in Maintaining the Distinctive Compositions of the Nucleus and Cytoplasm. International Journal of Molecular Sciences, 2022, 23, 2578.	1.8	15
137	Molecular interactions in intermediate filaments. BioEssays, 1991, 13, 597-600.	1.2	14
138	New Crystal Forms of the Motile Major Sperm Protein (MSP) ofAscaris suum. Journal of Structural Biology, 1996, 116, 432-437.	1.3	14
139	Structures of nuclear transport components. Trends in Cell Biology, 1999, 9, 310-311.	3.6	14
140	Reconstitution of Amoeboid Motility InÂVitro Identifies a Motor-Independent Mechanism for Cell Body Retraction. Current Biology, 2011, 21, 1727-1731.	1.8	14
141	Nuclear pores and macromolecular assemblies involved in nucleocytoplasmic transport. Current Opinion in Structural Biology, 1996, 6, 162-165.	2.6	13
142	Solution structure of the motile major sperm protein (MSP) of Ascaris suum - evidence for two manganese binding sites and the possible role of divalent cations in filament formation 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 284, 1611-1624.	2.0	13
143	Structural Basis for the Function of the Saccharomyces cerevisiae Gfd1 Protein in mRNA Nuclear Export. Journal of Biological Chemistry, 2010, 285, 20704-20715.	1.6	13
144	1 H NMR study of long and short myosin S2 fragments. FEBS Letters, 1982, 146, 293-296.	1.3	12

9

#	Article	IF	CITATIONS
145	Crystallization of the Motile Major Sperm Protein (MSP) of the Nematode Ascaris suum. Journal of Molecular Biology, 1993, 232, 298-300.	2.0	12
146	Cytoskeleton Dynamics Powers Nematode Sperm Motility. Advances in Protein Chemistry, 2005, 71, 383-399.	4.4	12
147	Nuclear Export of Small RNAs. Science, 2009, 326, 1195-1196.	6.0	12
148	Dissecting the roles of Cse1 and Nup2 in classical <scp>NLS argo</scp> release in vivo. Traffic, 2020, 21, 622-635.	1.3	12
149	Crystalline sheets of tropomyosin. Journal of Molecular Biology, 1984, 174, 231-238.	2.0	11
150	Cryoâ€electron microscopy of tropomyosin magnesium paracrystals. Journal of Microscopy, 1985, 138, 53-60.	0.8	11
151	Location of the binding site of the mannose-specific lectin comitin on F-actin 1 1Edited by I. B. Holland. Journal of Molecular Biology, 1998, 284, 1255-1263.	2.0	11
152	Selective Targeting of the TPX2 Site of Importinâ€Î± Using Fragmentâ€Based Ligand Design. ChemMedChem, 2015, 10, 1232-1239.	1.6	11
153	MERS-CoV ORF4b employs an unusual binding mechanism to target IMPα and block innate immunity. Nature Communications, 2022, 13, 1604.	5.8	10
154	A new crystal form of tropomyosin. Journal of Molecular Biology, 1987, 195, 219-223.	2.0	9
155	Preparation of shadowed nuclear envelopes from Xenopus. Journal of Microscopy, 1988, 151, 115-126.	0.8	8
156	Structural characterization of the principal mRNA-export factor Mex67–Mtr2 fromChaetomium thermophilum. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 876-888.	0.4	8
157	Transmission electron microscopy of frozen hydrated biological material. Electron Microscopy Reviews, 1989, 2, 117-121.	1.3	7
158	Structure of the Sac3 RNA-binding M-region in the Saccharomyces cerevisiae TREX-2 complex. Nucleic Acids Research, 2017, 45, 5577-5585.	6.5	7
159	Nuclear envelope dynamics and nucleocytoplasmic transport. Journal of Cell Science, 1991, 1991, 79-82.	1.2	6
160	Development of Cellâ€Permeable, Nonâ€Helical Constrained Peptides to Target a Key Protein–Protein Interaction in Ovarian Cancer. Angewandte Chemie, 2017, 129, 539-544.	1.6	6
161	Electron Microscopy of Biological Macromolecules. , 1990, , 9-39.		6
162	Computer Analysis of Ordered Microbiological Objects. , 1986, , 333-364.		6

10

#	ARTICLE	IF	CITATIONS
163	Crystallization and Preliminary X-Ray Diffraction Characterization of a Dimerizing Fragment of the Rod Domain of theDictyosteliumGelation Factor (ABP-120). Journal of Structural Biology, 1997, 120, 192-195.	1.3	5
164	Crystallization and preliminary X-ray diffraction analysis of theSaccharomyces cerevisiaeRan-binding protein Mog1p. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 229-231.	2.5	5
165	Paramyosin: Chemical evidence for chain heterogeneity. FEBS Letters, 1975, 58, 16-18.	1.3	4
166	Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence. Journal of Structural Biology, 2016, 195, 273-281.	1.3	4
167	Distinct effects on mRNA export factor GANP underlie neurological disease phenotypes and alter gene expression depending on intron content. Human Molecular Genetics, 2020, 29, 1426-1439.	1.4	4
168	1.25â€Ã resolution structure of an RNA 20-mer that binds to the TREX2 complex. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1318-1321.	0.4	4
169	Organic stains for electron microscopy. Journal of Microscopy, 1973, 97, 381-383.	0.8	3
170	Muscle Structure and Function—An Explanation. Equine Veterinary Journal, 1976, 8, 17-19.	0.9	3
171	The Sac3 TPR-like region in the Saccharomyces cerevisiae TREX-2 complex is more extensive but independent of the CID region. Journal of Structural Biology, 2016, 195, 316-324.	1.3	3
172	The Role of Repeating Sequence Motifs in Interactions Between α-Helical Coiled-Coils such as Myosin, Tropomyosin and Intermediate-Filament Proteins. Springer Series in Biophysics, 1989, , 150-159.	0.4	2
173	Molecular machinery of nuclear trafficking. Journal of Cell Science, 2002, 115, 2001-2002.	1.2	2
174	Ran in Nucleocytoplasmic Transport. , 2014, , 109-124.		1
175	Coils and Supercoils in Proteins. Solid Mechanics and Its Applications, 2002, , 499-511.	0.1	О
176	Quality control of mRNA export: An evolutionarily conserved zinc finger protein mediates preferential export of properly processed mRNA to the cytoplasm. FASEB Journal, 2008, 22, 992.1.	0.2	0
177	Resolution A Biological Perspective. , 1990, , 255-266.		0