Christian P R Hackenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1176495/publications.pdf

Version: 2024-02-01

81 papers

3,965 citations

34 h-index 61 g-index

90 all docs 90 docs citations

90 times ranked 4341 citing authors

#	Article	IF	CITATIONS
1	Chemoselective Ligation and Modification Strategies for Peptides and Proteins. Angewandte Chemie - International Edition, 2008, 47, 10030-10074.	13.8	694
2	Covalent Attachment of Cyclic TAT Peptides to GFP Results in Protein Delivery into Live Cells with Immediate Bioavailability. Angewandte Chemie - International Edition, 2015, 54, 1950-1953.	13.8	230
3	Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nature Chemistry, 2017, 9, 762-771.	13.6	216
4	Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angewandte Chemie - International Edition, 2018, 57, 2314-2333.	13.8	170
5	Chemoselective Staudingerâ€Phosphite Reaction of Azides for the Phosphorylation of Proteins. Angewandte Chemie - International Edition, 2009, 48, 8234-8239.	13.8	126
6	Current Status: Site-Specific Antibody Drug Conjugates. Journal of Clinical Immunology, 2016, 36, 100-107.	3.8	120
7	Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Molecular BioSystems, 2011, 7, 1420.	2.9	108
8	Chemoselective Peptide Cyclization by Traceless Staudinger Ligation. Angewandte Chemie - International Edition, 2008, 47, 5984-5988.	13.8	102
9	Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nature Nanotechnology, 2020, 15, 373-379.	31.5	96
10	Site-specific PEGylation of Proteins: Recent Developments. Journal of Organic Chemistry, 2014, 79, 10727-10733.	3.2	91
11	Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nature Chemistry, 2021, 13, 530-539.	13.6	88
12	More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. Current Opinion in Chemical Biology, 2014, 22, 62-69.	6.1	86
13	Multivalent Peptide–Nanoparticle Conjugates for Influenzaâ€Virus Inhibition. Angewandte Chemie - International Edition, 2017, 56, 5931-5936.	13.8	86
14	Versatile and Efficient Siteâ€Specific Protein Functionalization by Tubulin Tyrosine Ligase. Angewandte Chemie - International Edition, 2015, 54, 13787-13791.	13.8	82
15	Site-specific PEGylation of proteins by a Staudinger-phosphite reaction. Chemical Science, 2010, 1, 596.	7.4	77
16	Cysteine‧elective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angewandte Chemie - International Edition, 2019, 58, 11625-11630.	13.8	76
17	Perturbing the folding energy landscape of the bacterial immunity protein Im7 by site-specific N-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22528-22533.	7.1	72
18	Site-Specifically Phosphorylated Lysine Peptides. Journal of the American Chemical Society, 2014, 136, 13622-13628.	13.7	68

#	Article	IF	CITATIONS
19	Semisynthesis of a Glycosylated Im7 Analogue for Protein Folding Studies. Journal of the American Chemical Society, 2005, 127, 12882-12889.	13.7	67
20	Targeted Subcellular Protein Delivery Using Cleavable Cyclic Cell-Penetrating Peptides. Bioconjugate Chemistry, 2019, 30, 400-404.	3.6	60
21	Traceless Purification and Desulfurization of Tau Protein Ligation Products. Angewandte Chemie - International Edition, 2015, 54, 306-310.	13.8	50
22	Vinylphosphonites for Staudinger-induced chemoselective peptide cyclization and functionalization. Chemical Science, 2019, 10, 6322-6329.	7.4	48
23	Chemically Induced Vinylphosphonothiolate Electrophiles for Thiol–Thiol Bioconjugations. Journal of the American Chemical Society, 2020, 142, 9544-9552.	13.7	46
24	Staudinger-Phosphonite Reactions for the Chemoselective Transformation of Azido-Containing Peptides and Proteins. Organic Letters, 2011, 13, 5440-5443.	4.6	43
25	Design of <i>S</i> â€Allylcysteine in Situ Production and Incorporation Based on a Novel Pyrrolysylâ€ŧRNA Synthetase Variant. ChemBioChem, 2017, 18, 85-90.	2.6	42
26	The reduction of oxidized methionine residues in peptide thioesters with NH4I–Me2S. Organic and Biomolecular Chemistry, 2006, 4, 2291-2295.	2.8	41
27	Site-specific functionalisation of proteins by a Staudinger-type reaction using unsymmetrical phosphites. Chemical Communications, 2010, 46, 3176.	4.1	41
28	Ethynylphosphonamidates for the Rapid and Cysteineâ€Selective Generation of Efficacious Antibody–Drug Conjugates. Angewandte Chemie - International Edition, 2019, 58, 11631-11636.	13.8	40
29	Chemical Approaches to Investigate Labile Peptide and Protein Phosphorylation. Accounts of Chemical Research, 2017, 50, 1883-1893.	15.6	39
30	Graphene Oxideâ€Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multipleâ€Drug Resistance. Advanced Functional Materials, 2020, 30, 2000933.	14.9	39
31	Improving Glycopeptide Synthesis: \hat{A} A Convenient Protocol for the Preparation of \hat{I}^2 -Glycosylamines and the Synthesis of Glycopeptides. Journal of Organic Chemistry, 2005, 70, 3574-3578.	3.2	37
32	Stabilization of Peptides for Intracellular Applications by Phosphoramidate‣inked Polyethylene Glycol Chains. Angewandte Chemie - International Edition, 2013, 52, 11920-11924.	13.8	37
33	Semiâ€synthesis of a tagâ€free <i>O</i> àâ€GlcNAcylated tau protein by sequential chemoselective ligation. Journal of Peptide Science, 2016, 22, 327-333.	1.4	35
34	Diethynyl Phosphinates for Cysteineâ€Selective Protein Labeling and Disulfide Rebridging. Angewandte Chemie - International Edition, 2021, 60, 15359-15364.	13.8	35
35	The Alzheimer's Disease Related Tau Protein as a New Target for Chemical Protein Engineering. Chemistry - A European Journal, 2012, 18, 2488-2492.	3.3	34
36	Alkyne Phosphonites for Sequential Azide–Azide Couplings. Angewandte Chemie - International Edition, 2013, 52, 9504-9508.	13.8	34

#	Article	IF	Citations
37	Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides. Nature Communications, 2016, 7, 12703.	12.8	31
38	Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling. Chemical Science, 2017, 8, 3471-3478.	7.4	31
39	Synthesis of N,N-disubstituted phosphoramidates via a Lewis acid-catalyzed phosphorimidate rearrangement. Chemical Communications, 2008, , 2932.	4.1	30
40	Phosphorylation and O-GlcNAcylation of the PHF-1 Epitope of Tau Protein Induce Local Conformational Changes of the C-Terminus and Modulate Tau Self-Assembly Into Fibrillar Aggregates. Frontiers in Molecular Neuroscience, 2021, 14, 661368.	2.9	30
41	Direct access to site-specifically phosphorylated-lysine peptides from a solid-support. Organic and Biomolecular Chemistry, 2015, 13, 6839-6843.	2.8	25
42	Electron Transfer/Higher Energy Collisional Dissociation of Doubly Charged Peptide Ions: Identification of Labile Protein Phosphorylations. Journal of the American Society for Mass Spectrometry, 2019, 30, 1578-1585.	2.8	24
43	Gas-Phase Rearrangement in Lysine Phosphorylated Peptides During Electron-Transfer Dissociation Tandem Mass Spectrometry. Analytical Chemistry, 2015, 87, 6990-6994.	6.5	23
44	Nanobodys: Strategien zur chemischen Funktionalisierung und intrazellulÄre Anwendungen. Angewandte Chemie, 2018, 130, 2336-2357.	2.0	23
45	Chemoselective Bioconjugation of Triazole Phosphonites in Aqueous Media. Chemistry - A European Journal, 2015, 21, 970-974.	3.3	21
46	Cellâ€Permeable Nanobodies Allow Dualâ€Color Superâ€Resolution Microscopy in Untransfected Living Cells. Angewandte Chemie - International Edition, 2021, 60, 22075-22080.	13.8	21
47	Cysteinselektive phosphonamidatbasierte Elektrophile f $\tilde{A}\frac{1}{4}$ r modulare Biokonjugationen. Angewandte Chemie, 2019, 131, 11751-11756.	2.0	19
48	Protein Modification of Lysine with 2-(2-Styrylcyclopropyl)ethanal. Organic Letters, 2019, 21, 10043-10047.	4.6	17
49	Chemoselective triazole-phosphonamidate conjugates suitable for photorelease. Chemical Communications, 2018, 54, 763-766.	4.1	15
50	Native chemical ligation between asparagine and valine: Application and limitations for the synthesis of tri-phosphorylated C-terminal tau. Bioorganic and Medicinal Chemistry, 2015, 23, 2890-2894.	3.0	14
51	Inhibition of the key enzyme of sialic acid biosynthesis by C6-Se modified N-acetylmannosamine analogs. Chemical Science, 2016, 7, 3928-3933.	7.4	13
52	<i>N</i> â€Hydroxysuccinimideâ€Modified Ethynylphosphonamidates Enable the Synthesis of Configurationally Defined Protein Conjugates. ChemBioChem, 2020, 21, 113-119.	2.6	12
53	A Synthetic Kiss of Death: Expressed Protein Ligation of a Ubiquitin–Peptide Conjugate. ChemBioChem, 2007, 8, 1221-1223.	2.6	11
54	Evaluation of Multivalent Sialylated Polyglycerols for Resistance Induction in and Broad Antiviral Activity against Influenza A Viruses. Journal of Medicinal Chemistry, 2021, 64, 12774-12789.	6.4	11

#	Article	IF	CITATIONS
55	Ethynylphosphonamidates for the Rapid and Cysteineâ€Selective Generation of Efficacious Antibody–Drug Conjugates. Angewandte Chemie, 2019, 131, 11757-11762.	2.0	10
56	The mechanism behind enhanced reactivity of unsaturated phosphorus(<scp>v</scp>) electrophiles towards thiols. Chemical Science, 2021, 12, 8141-8148.	7.4	10
57	Modern Ligation Methods to Access Natural and Modified Proteins. Chimia, 2018, 72, 802.	0.6	9
58	In-Cell Synthesis of Bioorthogonal Alkene Tag S-Allyl-Homocysteine and Its Coupling with Reprogrammed Translation. International Journal of Molecular Sciences, 2019, 20, 2299.	4.1	9
59	Multivalente Peptidâ€Nanopartikelâ€Konjugate zur Hemmung des Influenzavirus. Angewandte Chemie, 2017, 129, 6025-6030.	2.0	8
60	TuPPL: Tub-tag mediated C-terminal protein–protein-ligation using complementary click-chemistry handles. Organic and Biomolecular Chemistry, 2019, 17, 4964-4969.	2.8	8
61	Modern Peptide and Protein Chemistry: Reaching New Heights. Journal of Organic Chemistry, 2020, 85, 1328-1330.	3.2	8
62	Synthesis and Evaluation of Nonâ€Hydrolyzable Phospho‣ysine Peptide Mimics. Chemistry - A European Journal, 2021, 27, 2326-2331.	3.3	7
63	Discovery, X-ray structure and CPP-conjugation enabled uptake of p53/MDM2 macrocyclic peptide inhibitors. RSC Chemical Biology, 2021, 2, 1661-1668.	4.1	7
64	Bisâ€ethynylphosphonamidates as an Modular Conjugation Platform to Generate Multiâ€Functional Proteinâ€and Antibodyâ€Drugâ€Conjugates. European Journal of Organic Chemistry, 2022, 2022, .	2.4	7
65	Small Molecules Targeting Human <i>N</i> à€Acetylmannosamine Kinase. ChemBioChem, 2017, 18, 1279-1285.	2.6	6
66	Siteâ€Specific Antibody Fragment Conjugates for Reversible Staining in Fluorescence Microscopy. ChemBioChem, 2021, 22, 1205-1209.	2.6	6
67	Synthetic αâ€Helical Peptides as Potential Inhibitors of the ACE2 SARS oVâ€⊋ Interaction. ChemBioChem, 2022, 23, .	2.6	6
68	Werner Reutter: A Visionary Pioneer in Molecular Glycobiology. ChemBioChem, 2017, 18, 1141-1145.	2.6	5
69	Tubulin Tyrosine Ligase-Mediated Modification of Proteins. Methods in Molecular Biology, 2019, 2012, 327-355.	0.9	5
70	Tag-Free Semi-Synthesis of the Tau Protein. Methods in Molecular Biology, 2017, 1523, 215-235.	0.9	4
71	Zellpermeable Nanobodys ermöglichen Zweiâ€Farbenâ€Superauflösungsmikroskopie in lebenden, nicht transfizierten Zellen. Angewandte Chemie, 2021, 133, 22246-22252.	2.0	3
72	A silyl ether-protected building block for $\langle i \rangle O \langle i \rangle$ -GlcNAcylated peptide synthesis to enable one-pot acidic deprotection. Organic and Biomolecular Chemistry, 2021, 19, 8014-8017.	2.8	3

#	Article	IF	CITATIONS
73	Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids. Methods in Molecular Biology, 2018, 1728, 67-93.	0.9	2
74	Synthesis and Evaluation of Nonâ€Hydrolyzable Phospho‣ysine Peptide Mimics. Chemistry - A European Journal, 2021, 27, 2223-2223.	3.3	2
75	Targeted Subcellular Protein Delivery Using Cleavable Cyclic Cell-Penetrating Peptide-Conjugates. Methods in Molecular Biology, 2021, 2355, 287-299.	0.9	2
76	Diethinylphosphinate für die Cysteinâ€selektive Proteinmarkierung und Disulfidâ€Verbrückung. Angewandte Chemie, 2021, 133, 15487-15492.	2.0	2
77	One-Step Fluorescent Protein Labeling by Tubulin Tyrosine Ligase. Methods in Molecular Biology, 2019, 2033, 167-189.	0.9	2
78	Atomistic insight into the essential binding event of ACE2-derived peptides to the SARS-CoV-2 spike protein. Biological Chemistry, 2022, 403, 615-624.	2.5	2
79	Modular solid-phase synthesis of electrophilic cysteine-selective ethynyl-phosphonamidate peptides. Chemical Communications, 2022, 58, 8388-8391.	4.1	2
80	Combining free energy calculations with tailored enzyme activity assays to elucidate substrate binding of a phospho-lysine phosphatase. Chemical Science, 2020, 11, 12655-12661.	7.4	1
81	Design and Functional Analysis of Heterobifunctional Multivalent Phage Capsid Inhibitors Blocking the Entry of Influenza Virus. Bioconjugate Chemistry, 2022, 33, 1269-1278.	3.6	1