
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO ₂ Fixation. Chemical Reviews, 2013, 113, 6621-6658.	23.0	1,786
2	Ligand Bite Angle Effects in Metal-catalyzed Câ^'C Bond Formation. Chemical Reviews, 2000, 100, 2741-2770.	23.0	955
3	Dendrimers as Support for Recoverable Catalysts and Reagents. Chemical Reviews, 2002, 102, 3717-3756.	23.0	594
4	Reactivity within a confined self-assembled nanospace. Chemical Society Reviews, 2008, 37, 247-262.	18.7	587
5	Supramolecular catalysis beyond enzyme mimics. Nature Chemistry, 2010, 2, 615-621.	6.6	584
6	Transition Metal Catalysis Using Functionalized Dendrimers. Angewandte Chemie - International Edition, 2001, 40, 1828-1849.	7.2	538
7	Transition metal catalysis in confined spaces. Chemical Society Reviews, 2015, 44, 433-448.	18.7	537
8	Wide Bite Angle Diphosphines:Â Xantphos Ligands in Transition Metal Complexes and Catalysis. Accounts of Chemical Research, 2001, 34, 895-904.	7.6	476
9	Neutral Tridentate PNP Ligands and Their Hybrid Analogues: Versatile Nonâ€Innocent Scaffolds for Homogeneous Catalysis. Angewandte Chemie - International Edition, 2009, 48, 8832-8846.	7.2	407
10	Synthesis of functional â€~polyolefins': state of the art and remaining challenges. Chemical Society Reviews, 2013, 42, 5809.	18.7	365
11	Co@NH ₂ -MIL-125(Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H ₂ production. Energy and Environmental Science, 2015, 8, 364-375.	15.6	362
12	Origin of the Bite Angle Effect on Rhodium Diphosphine Catalyzed Hydroformylation. Organometallics, 2000, 19, 872-883.	1.1	328
13	â€~Carbene Radicals' in Co ^{II} (por)-Catalyzed Olefin Cyclopropanation. Journal of the American Chemical Society, 2010, 132, 10891-10902.	6.6	301
14	Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions. Nature Chemistry, 2016, 8, 225-230.	6.6	262
15	Ligands that Store and Release Electrons during Catalysis. Angewandte Chemie - International Edition, 2011, 50, 3356-3358.	7.2	249
16	Complexes with Nitrogen entered Radical Ligands: Classification, Spectroscopic Features, Reactivity, and Catalytic Applications. Angewandte Chemie - International Edition, 2013, 52, 12510-12529.	7.2	243
17	Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. Chemical Communications, 2005, , 4333.	2.2	213
18	Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10460-10465.	3.3	211

#	Article	IF	CITATIONS
19	High-Precision Catalysts:Â Regioselective Hydroformylation of Internal Alkenes by Encapsulated Rhodium Complexes. Journal of the American Chemical Society, 2006, 128, 11344-11345.	6.6	202
20	Supramolecular Control on Chemo- and Regioselectivity via Encapsulation of (NHC)-Au Catalyst within a Hexameric Self-Assembled Host. Journal of the American Chemical Society, 2011, 133, 2848-2851.	6.6	201
21	IPr* an easily accessible highly hindered N-heterocyclic carbene. Dalton Transactions, 2010, 39, 1444-1446.	1.6	196
22	The future of solar fuels: when could they become competitive?. Energy and Environmental Science, 2018, 11, 1653-1669.	15.6	188
23	Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chemical Science, 2014, 5, 2135-2145.	3.7	185
24	Screening of a Supramolecular Catalyst Library in the Search for Selective Catalysts for the Asymmetric Hydrogenation of a Difficult Enamide Substrate. Angewandte Chemie - International Edition, 2006, 45, 1223-1227.	7.2	184
25	Accelerated Biphasic Hydroformylation by Vesicle Formation of Amphiphilic Diphosphines. Journal of the American Chemical Society, 2000, 122, 1650-1657.	6.6	181
26	Encapsulation of Transition Metal Catalysts by Ligand-Template Directed Assembly. Journal of the American Chemical Society, 2004, 126, 1526-1536.	6.6	181
27	ZnII-Salphen Complexes as Versatile Building Blocks for the Construction of Supramolecular Box Assemblies. Chemistry - A European Journal, 2005, 11, 4743-4750.	1.7	181
28	Enantioselective Hydroformylation by a Rh-Catalyst Entrapped in a Supramolecular Metallocage. Journal of the American Chemical Society, 2015, 137, 2680-2687.	6.6	175
29	New directions in supramolecular transition metal catalysis. Organic and Biomolecular Chemistry, 2005, 3, 2371.	1.5	174
30	A Silica-Supported, Switchable, and Recyclable Hydroformylationâ^'Hydrogenation Catalyst. Journal of the American Chemical Society, 2001, 123, 8468-8476.	6.6	168
31	Mononuclear Water Oxidation Catalysts. Angewandte Chemie - International Edition, 2012, 51, 9740-9747.	7.2	168
32	Assembly of Encapsulated Transition Metal Catalysts. Angewandte Chemie - International Edition, 2001, 40, 4271-4274.	7.2	164
33	Chiral Induction Effects in Ruthenium(II) Amino Alcohol Catalysed Asymmetric Transfer Hydrogenation of Ketones: An Experimental and Theoretical Approach. Chemistry - A European Journal, 2000, 6, 2818-2829.	1.7	162
34	C1 polymerisation and related C–C bond forming â€~carbeneinsertion' reactions. Chemical Society Reviews, 2010, 39, 1706-1723.	18.7	155
35	Intramolecular Redox-Active Ligand-to-Substrate Single-Electron Transfer: Radical Reactivity with a Palladium(II) Complex. Journal of the American Chemical Society, 2014, 136, 11574-11577.	6.6	152
36	Me2–NHC based robust Ir catalyst for efficient water oxidation. Chemical Communications, 2011, 47, 2712.	2.2	151

#	Article	IF	CITATIONS
37	"Clickphineâ€ı  A Novel and Highly Versatile P,N Ligand Class via Click Chemistry. Organic Letters, 2006, 8, 3227-3230.	2.4	150
38	Supraphos:Â A Supramolecular Strategy To Prepare Bidentate Ligands. Journal of the American Chemical Society, 2004, 126, 4056-4057.	6.6	147
39	Remote Supramolecular Control of Catalyst Selectivity in the Hydroformylation of Alkenes. Angewandte Chemie - International Edition, 2011, 50, 396-400.	7.2	139
40	Noncovalently Functionalized Dendrimers as Recyclable Catalysts. Journal of the American Chemical Society, 2001, 123, 8453-8458.	6.6	134
41	Confinement Effects in Catalysis Using Well-Defined Materials and Cages. Frontiers in Chemistry, 2018, 6, 623.	1.8	132
42	Multicomponent Porphyrin Assemblies as Functional Bidentate Phosphite Ligands for Regioselective Rhodium-Catalyzed Hydroformylation. Angewandte Chemie - International Edition, 2003, 42, 5619-5623.	7.2	131
43	The coordination behaviour of large natural bite angle diphosphine ligands towards methyl and 4-cyanophenylpalladium(ii) complexes. Dalton Transactions RSC, 2002, , 2308.	2.3	130
44	Cobaltâ€Porphyrinâ€Catalysed Intramolecular Ringâ€Closing Câ^'H Amination of Aliphatic Azides: A Nitreneâ€Radical Approach to Saturated Heterocycles. Chemistry - A European Journal, 2017, 23, 7945-7952.	1.7	129
45	Binding Features of Molecular Clips. Separation of the Effects of Hydrogen Bonding and Ï€â^'Ï€ Interactions. Journal of the American Chemical Society, 1997, 119, 9956-9964.	6.6	127
46	Ligand-Template Directed Assembly: An Efficient Approach for the Supramolecular Encapsulation of Transition-Metal Catalysts. Chemistry - A European Journal, 2006, 12, 4218-4227.	1.7	127
47	A Robust, Environmentally Benign Catalyst for Highly Selective Hydroformylation. Angewandte Chemie - International Edition, 1999, 38, 3231-3235.	7.2	126
48	Ligand Template Strategies for Catalyst Encapsulation. Accounts of Chemical Research, 2018, 51, 2115-2128.	7.6	121
49	Template-induced formation of heterobidentate ligands and their application in the asymmetric hydroformylation of styrene. Chemical Communications, 2006, , 4679.	2.2	120
50	Tunable Hemilabile Ligands for Adaptive Transition Metal Complexes. Organometallics, 2011, 30, 499-510.	1.1	119
51	Co ^{III} –Carbene Radical Approach to Substituted 1 <i>H</i> -Indenes. Journal of the American Chemical Society, 2016, 138, 8968-8975.	6.6	117
52	Continuous, selective hydroformylation in supercritical carbon dioxide using an immobilised homogeneous catalyst. Chemical Communications, 2000, , 1497-1498.	2.2	116
53	UREAphos: supramolecular bidentate ligands for asymmetric hydrogenation. Chemical Communications, 2007, , 864-866.	2.2	116
54	Singly Hydrogen Bonded Supramolecular Ligands for Highly Selective Rhodiumâ€Catalyzed Hydrogenation Reactions. Angewandte Chemie - International Edition, 2009, 48, 2162-2165.	7.2	114

#	Article	IF	CITATIONS
55	Bidentate ligands by supramolecular chemistry—the future for catalysis?. Dalton Transactions, 2006, , 3385-3391.	1.6	113
56	An X-ray Study of the Effect of the Bite Angle of Chelating Ligands on the Geometry of Palladium(allyl) Complexes:Â Implications for the Regioselectivity in the Allylic Alkylation. Inorganic Chemistry, 2001, 40, 3363-3372.	1.9	112
57	"Cofactor―Controlled Enantioselective Catalysis. Journal of the American Chemical Society, 2011, 133, 17176-17179.	6.6	111
58	Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation. Coordination Chemistry Reviews, 2014, 262, 1-15.	9.5	111
59	Bidentate ligands formed by self-assemblyElectronic supplementary information (ESI) available: ligand synthesis and detailed experimental data. See http://www.rsc.org/suppdata/cc/b3/b306683e/. Chemical Communications, 2003, , 2474.	2.2	109
60	Reactivity of Dinitrogen Bound to Mid―and Lateâ€Transitionâ€Metal Centers. European Journal of Inorganic Chemistry, 2015, 2015, 567-598.	1.0	108
61	Encapsulation of Metalloporphyrins in a Selfâ€Assembled Cubic M ₈ L ₆ Cage: A New Molecular Flask for Cobalt–Porphyrinâ€Catalysed Radicalâ€Type Reactions. Chemistry - A European Journal, 2013, 19, 10170-10178.	1.7	103
62	Self-Assembly of a Confined Rhodium Catalyst for Asymmetric Hydroformylation of Unfunctionalized Internal Alkenes. Journal of the American Chemical Society, 2012, 134, 2860-2863.	6.6	101
63	The bite angle makes the catalyst. Pure and Applied Chemistry, 1999, 71, 1443-1452.	0.9	100
64	SPANphos: A C2-Symmetric trans-Coordinating Diphosphane Ligand. Angewandte Chemie - International Edition, 2003, 42, 1284-1287.	7.2	100
65	Libraries of Bidentate Phosphorus Ligands; Synthesis Strategies and Application in Catalysis. European Journal of Inorganic Chemistry, 2008, 2008, 2939-2958.	1.0	100
66	Encapsulated Cobalt–Porphyrin as a Catalyst for Size‣elective Radicalâ€ŧype Cyclopropanation Reactions. Chemistry - A European Journal, 2014, 20, 4880-4884.	1.7	99
67	Site-Isolation Effects in a Dendritic Nickel Catalyst for the Oligomerization of Ethylene. Journal of the American Chemical Society, 2004, 126, 14960-14963.	6.6	98
68	Palladium complexes of phosphine functionalised carbosilane dendrimers as catalysts in a continuous flow membrane reactorâ€. Chemical Communications, 1999, , 1623-1624.	2.2	96
69	Rh-Mediated Polymerization of Carbenes:  Mechanism and Stereoregulation. Journal of the American Chemical Society, 2007, 129, 11631-11641.	6.6	95
70	Sulfonamidoâ^'Phosphoramidite Ligands in Cooperative Dinuclear Hydrogenation Catalysis. Journal of the American Chemical Society, 2009, 131, 6683-6685.	6.6	95
71	Gold(I) Catalysis at Extreme Concentrations Inside Selfâ€Assembled Nanospheres. Angewandte Chemie - International Edition, 2014, 53, 13380-13384.	7.2	95
72	Highly Selective Asymmetric Rh-Catalyzed Hydroformylation of Heterocyclic Olefins. Journal of the American Chemical Society, 2012, 134, 6607-6616.	6.6	94

#	Article	IF	CITATIONS
73	Iridium(I) versus Ruthenium(II). A Computational Study of the Transition Metal Catalyzed Transfer Hydrogenation of Ketones. Organometallics, 2003, 22, 3150-3157.	1.1	91
74	Supramolecular Approaches To Control Activity and Selectivity in Hydroformylation Catalysis. ACS Catalysis, 2018, 8, 3469-3488.	5.5	89
75	Encapsulated transition metal catalysts comprising peripheral Zn(ii)salen building blocks: template-controlled reactivity and selectivity in hydroformylation catalysis. Chemical Communications, 2005, , 3661.	2.2	87
76	Baseâ€Free Production of H ₂ by Dehydrogenation of Formic Acid Using An Iridium–bisMETAMORPhos Complex. Chemistry - A European Journal, 2013, 19, 11507-11511.	1.7	87
77	Carbene insertion into transition metal–carbon bonds: a new tool for catalytic C–C bond formation. Catalysis Science and Technology, 2011, 1, 153.	2.1	86
78	A Self-Assembled Molecular Cage for Substrate-Selective Epoxidation Reactions in Aqueous Media. ACS Catalysis, 2016, 6, 3106-3112.	5.5	85
79	Catalysis in the core of a carbosilane dendrimer. Chemical Communications, 1999, , 1119-1120.	2.2	83
80	Rigid bis-zinc(ii) salphen building blocks for the formation of template-assisted bidentate ligands and their application in catalysis. Dalton Transactions, 2007, , 2311.	1.6	83
81	Electrochemical and Spectroelectrochemical Characterization of an Iridium-Based Molecular Catalyst for Water Splitting: Turnover Frequencies, Stability, and Electrolyte Effects. Journal of the American Chemical Society, 2014, 136, 10432-10439.	6.6	83
82	Redoxâ€Active Ligandâ€Induced Homolytic Bond Activation. Angewandte Chemie - International Edition, 2015, 54, 1516-1520.	7.2	83
83	Hybrid bidentate phosphorus ligands in asymmetric catalysis: Privileged ligand approach vs. combinatorial strategies. Organic and Biomolecular Chemistry, 2011, 9, 1704.	1.5	82
84	Precise Supramolecular Control of Selectivity in the Rh-Catalyzed Hydroformylation of Terminal and Internal Alkenes. Journal of the American Chemical Society, 2013, 135, 10817-10828.	6.6	82
85	Supramolecular Control of Ligand Coordination and Implications in Hydroformylation Reactions. Angewandte Chemie - International Edition, 2011, 50, 7342-7345.	7.2	81
86	Solid-Phase Synthesis of Homogeneous Ruthenium Catalysts on Silica for the Continuous Asymmetric Transfer Hydrogenation Reaction. Chemistry - A European Journal, 2001, 7, 1202-1208.	1.7	80
87	Asymmetric Hydroformylation Using Taddol-Based Chiral Phosphineâ^'Phosphite Ligands. Organometallics, 2010, 29, 478-483.	1.1	80
88	Multiple Recognition of Barbiturate Guests by"Hamilton-Receptor―Functionalized Dendrimers. Chemistry - A European Journal, 2004, 10, 2036-2047.	1.7	79
89	METAMORPhos: Adaptive Supramolecular Ligands and Their Mechanistic Consequences for Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2008, 47, 3180-3183.	7.2	79
90	Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Selfâ€Assembled Nanospheres. Angewandte Chemie - International Edition, 2018, 57, 11247-11251.	7.2	76

#	Article	IF	CITATIONS
91	Dehydrogenation of formic acid by Ir–bisMETAMORPhos complexes: experimental and computational insight into the role of a cooperative ligand. Chemical Science, 2015, 6, 1027-1034.	3.7	75
92	Dynamic Combinatorial Chemistry: The Unexpected Choice of Receptors by Guest Molecules. Angewandte Chemie - International Edition, 2006, 45, 2660-2663.	7.2	74
93	Catalyst selection based on intermediate stability measured by mass spectrometry. Nature Chemistry, 2010, 2, 417-421.	6.6	74
94	Capsule-controlled selectivity of a rhodium hydroformylation catalyst. Nature Communications, 2013, 4, 2670.	5.8	74
95	Templated Encapsulation of Pyridylâ€Bian Palladium Complexes: Tunable Catalysts for CO/4â€ <i>tert</i> â€Butylstyrene Copolymerization. Angewandte Chemie - International Edition, 2007, 46, 8590-8592.	7.2	73
96	Supramolecular Control of Selectivity in Hydroformylation of Vinyl Arenes: Easy Access to Valuable βâ€Aldehyde Intermediates. Angewandte Chemie - International Edition, 2013, 52, 3878-3882.	7.2	70
97	Photosystem lâ€based Biophotovoltaics on Nanostructured Hematite. Advanced Functional Materials, 2014, 24, 7467-7477.	7.8	70
98	A Convenient Synthetic Route for the Preparation of Nonsymmetric Metallo-salphen Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 4626-4634.	1.0	69
99	Water Splitting by Cooperative Catalysis. Angewandte Chemie - International Edition, 2009, 48, 8178-8181.	7.2	68
100	Metal-Directed Self-Assembly of a ZnII-salpyr Complex into a Supramolecular Vase Structure. Inorganic Chemistry, 2007, 46, 5829-5831.	1.9	67
101	A Switchable Gold Catalyst by Encapsulation in a Selfâ€Assembled Cage. Chemistry - A European Journal, 2016, 22, 14836-14839.	1.7	67
102	Sulfonated Xantphos Ligand and Methylated Cyclodextrin:Â A Winning Combination for Rhodium-Catalyzed Hydroformylation of Higher Olefins in Aqueous Medium. Organometallics, 2005, 24, 2070-2075.	1.1	66
103	Templated assembly of a molecular capsule. Chemical Communications, 1998, , 11-12.	2.2	65
104	Palladium-Catalyzed Amination of Aryl Bromides and Aryl Triflates Using Diphosphane Ligands: A Kinetic Study. Chemistry - A European Journal, 2001, 7, 475-482.	1.7	65
105	SUPRAphos-based palladium catalysts for the kinetic resolution of racemic cyclohexenyl acetate. Chemical Communications, 2007, , 2287.	2.2	65
106	INDOLPhos: novel hybrid phosphine-phosphoramidite ligands for asymmetric hydrogenation and hydroformylation. Dalton Transactions, 2007, , 3750.	1.6	65
107	Application of a Supramolecularâ€Ligand Library for the Automated Search for Catalysts for the Asymmetric Hydrogenation of Industrially Relevant Substrates. Chemistry - A European Journal, 2009, 15, 10272-10279.	1.7	65
108	Supramolecular strategies in artificial photosynthesis. Chemical Science, 2021, 12, 50-70.	3.7	65

#	Article	IF	CITATIONS
109	Homogeneous Catalysts Based on Firstâ€Row Transitionâ€Metals for Electrochemical Water Oxidation. ChemSusChem, 2021, 14, 234-250.	3.6	64
110	Picosecond Electron Injection Dynamics in Dye-Sensitized Oxides in the Presence of Electrolyte. Journal of Physical Chemistry C, 2011, 115, 2578-2584.	1.5	63
111	Supramoleculartrans-Coordinating Phosphine Ligands. Organometallics, 2006, 25, 954-960.	1.1	62
112	Highly enantioselective hydroformylation of dihydrofurans catalyzed by hybrid phosphine–phosphonite rhodium complexes. Chemical Communications, 2010, 46, 1244.	2.2	62
113	Beyond Classical Reactivity Patterns: Hydroformylation of Vinyl and Allyl Arenes to Valuable β- and γ-Aldehyde Intermediates Using Supramolecular Catalysis. Journal of the American Chemical Society, 2014, 136, 8418-8429.	6.6	61
114	An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media. Science Advances, 2016, 2, e1501014.	4.7	61
115	Hydrogen Bond Directed <i>ortho</i> elective Câ^'H Borylation of Secondary Aromatic Amides. Angewandte Chemie - International Edition, 2019, 58, 13039-13043.	7.2	61
116	SIAPhos: Phosphorylated Sulfonimidamides and their Use in Iridium atalyzed Asymmetric Hydrogenations of Sterically Hindered Cyclic Enamides. Advanced Synthesis and Catalysis, 2012, 354, 59-64.	2.1	60
117	Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chemical Reviews, 2022, 122, 12308-12369.	23.0	60
118	Sizeâ€Selective Hydroformylation by a Rhodium Catalyst Confined in a Supramolecular Cage. Chemistry - A European Journal, 2019, 25, 609-620.	1.7	59
119	Nickelâ€Catalyzed Stereodivergent Synthesis of <i>E</i> ―and <i>Z</i> â€Alkenes by Hydrogenation of Alkynes. ChemSusChem, 2019, 12, 3363-3369.	3.6	59
120	Gold Catalysis in (Supra)Molecular Cages to Control Reactivity and Selectivity. ChemCatChem, 2019, 11, 287-297.	1.8	59
121	A highly selective water-soluble dicationic palladium catalyst for the biphasic hydroxycarbonylation of alkenes. Chemical Communications, 1998, , 2431-2432.	2.2	58
122	Binuclear [(cod)(Cl)Ir(bpi)Ir(cod)] ⁺ for Catalytic Water Oxidation. Organometallics, 2011, 30, 372-374.	1.1	58
123	Substrate selectivity in the alkyne hydration mediated by NHC–Au(i) controlled by encapsulation of the catalyst within a hydrogen bonded hexameric host. Catalysis Science and Technology, 2013, 3, 2898.	2.1	58
124	Rhodium-Catalyzed Asymmetric Hydroformylation with Taddol-Based IndolPhos Ligands. Organometallics, 2010, 29, 2767-2776.	1.1	57
125	CH Activation of Benzene by a Photoactivated Ni ^{II} (azide): Formation of a Transient Nickel Nitrido Complex. Angewandte Chemie - International Edition, 2015, 54, 7055-7059.	7.2	57
126	Rational Design Rules for Molecular Water Oxidation Catalysts based on Scaling Relationships. Chemistry - A European Journal, 2017, 23, 16413-16418.	1.7	57

#	Article	IF	CITATIONS
127	On the Influence of the Bite Angle of Bidentate Phosphane Ligands on theRegioselectivity in Allylic Alkylation. European Journal of Inorganic Chemistry, 1999, 1999, 1237-1241.	1.0	54
128	INDOLPhosphole and INDOLPhos Palladiumâ^'Allyl Complexes in Asymmetric Allylic Alkylations. Organometallics, 2009, 28, 2724-2734.	1.1	54
129	Rhodium-Mediated Stereospecific Carbene Polymerization: From Homopolymers to Random and Block Copolymers. Macromolecules, 2010, 43, 8892-8903.	2.2	54
130	Enantioselective Intramolecular Reductive Heck Reaction with a Palladium/Monodentate Phosphoramidite Catalyst. ChemCatChem, 2017, 9, 551-554.	1.8	54
131	N–H bond activation by palladium(ii) and copper(i) complexes featuring a reactive bidentate PN-ligand. Dalton Transactions, 2012, 41, 11276.	1.6	53
132	Ruthenium PNN(O) Complexes: Cooperative Reactivity and Application as Catalysts for Acceptorless Dehydrogenative Coupling Reactions. Organometallics, 2017, 36, 1541-1549.	1.1	53
133	Control of Redox Events by Dye Encapsulation Applied to Lightâ€Driven Splitting of Hydrogen Sulfide. Angewandte Chemie - International Edition, 2017, 56, 11759-11763.	7.2	53
134	Synthesis, Conformational Analysis, and Binding Properties of Molecular Clips with Two Different Side Walls. Journal of Organic Chemistry, 1997, 62, 2234-2243.	1.7	52
135	Pincer ligands with an all-phosphorus donor set: subtle differences between rhodium and palladium. Dalton Transactions, 2011, 40, 8822.	1.6	52
136	A stable and recyclable supported aqueous phase catalyst for highly selective hydroformylation of higher olefinsâ€. Chemical Communications, 1999, , 1633-1634.	2.2	51
137	Photoinduced energy and electron transfer in bis-porphyrins with quinoxaline Tröger's base and biquinoxalinyl spacers. Physical Chemistry Chemical Physics, 2000, 2, 4281-4291.	1.3	51
138	Binuclear Cooperative Catalysts for the Hydrogenation and Hydroformylation of Olefins. ChemCatChem, 2013, 5, 2785-2793.	1.8	50
139	Template-Assisted Ligand Encapsulation; the Impact of an Unusual Coordination Geometry on a Supramolecular Pyridylphosphineâ^'Zn(II)porphyrin Assembly. Inorganic Chemistry, 2005, 44, 7696-7698.	1.9	49
140	Supramolecular bidentate phosphorus ligands based on bis-zinc(ii) and bis-tin(iv) porphyrin building blocks. Dalton Transactions, 2007, , 2302.	1.6	49
141	Platinum(<scp>ii</scp>)–porphyrin as a sensitizer for visible-light driven water oxidation in neutral phosphate buffer. Energy and Environmental Science, 2015, 8, 975-982.	15.6	49
142	Noncovalent Anchoring of Homogeneous Catalysts to Silica Supports with Well-Defined Binding Sites. Journal of the American Chemical Society, 2004, 126, 14557-14566.	6.6	48
143	Ligand Design in Rh(diene)-Mediated "Carbene―Polymerization; Efficient Synthesis of High-Mass, Highly Stereoregular, and Fully Functionalized Carbon-Chain Polymers. Organometallics, 2010, 29, 2823-2826.	1.1	47
144	Stereospecific Carbene Polymerization with Oxygenated Rh(diene) Species. Angewandte Chemie - International Edition, 2012, 51, 5157-5161.	7.2	47

#	Article	IF	CITATIONS
145	Tuning the Porphyrin Building Block in Selfâ€Assembled Cages for Branchedâ€Selective Hydroformylation of Propene. Chemistry - A European Journal, 2017, 23, 14769-14777.	1.7	47
146	Novel Cleft-Containing Porphyrins as Models for Studying Electron Transfer Processes. Angewandte Chemie International Edition in English, 1997, 36, 361-363.	4.4	46
147	Synthesis of Building Blocks for the Development of the SUPRAPhos Ligand Library and Examples of Their Application in Catalysis. European Journal of Organic Chemistry, 2008, 2008, 6079-6092.	1.2	46
148	Selective CC Coupling of Ir–Ethene and Ir–Carbenoid Radicals. Chemistry - A European Journal, 2008, 14, 7594-7599.	1.7	45
149	Asymmetric Hydrogenation of Enamides, α-Enol and α-Enamido Ester Phosphonates Catalyzed by IndolPhos-Rh Complexes. Journal of Organic Chemistry, 2009, 74, 8403-8406.	1.7	45
150	Wellâ€Đefined Dinuclear Gold Complexes for Preorganizationâ€Induced Selective Dual Gold Catalysis. Angewandte Chemie - International Edition, 2016, 55, 10042-10046.	7.2	45
151	Metal–Organic Capsules with NADH Mimics as Switchable Selectivity Regulators for Photocatalytic Transfer Hydrogenation. Journal of the American Chemical Society, 2019, 141, 12707-12716.	6.6	45
152	Bisphosphine based hetero-capsules for the encapsulation of transition metals. Chemical Communications, 2006, , 1700.	2.2	43
153	Direct Probing of Photoinduced Electron Transfer in a Self-Assembled Biomimetic [2Fe2S]-Hydrogenase Complex Using Ultrafast Vibrational Spectroscopy. Inorganic Chemistry, 2014, 53, 5373-5383.	1.9	43
154	Periodate as an Oxidant for Catalytic Water Oxidation: Oxidation via Electron Transfer or O-Atom Transfer?. European Journal of Inorganic Chemistry, 2014, 2014, 742-749.	1.0	43
155	Palladium(0)/NHCâ€Catalyzed Reductive Heck Reaction of Enones: A Detailed Mechanistic Study. Chemistry - A European Journal, 2015, 21, 18811-18820.	1.7	42
156	Hydrogenâ€Bondâ€Assisted Activation of Allylic Alcohols for Palladiumâ€Catalyzed Coupling Reactions. ChemSusChem, 2014, 7, 890-896.	3.6	41
157	Isostructural Phosphineâ^'Phosphite Ligands in Rhodium-Catalyzed Asymmetric Hydroformylation. Organometallics, 2010, 29, 4440-4447.	1.1	40
158	Rh-Mediated C1-Polymerization: Copolymers from Diazoesters and Sulfoxonium Ylides. ACS Catalysis, 2012, 2, 2046-2059.	5.5	40
159	Reversible cyclometalation at Rh ^I as a motif for metal–ligand bifunctional bond activation and base-free formic acid dehydrogenation. Catalysis Science and Technology, 2016, 6, 1320-1327.	2.1	40
160	Rh-Mediated Carbene Polymerization: from Multistep Catalyst Activation to Alcohol-Mediated Chain-Transfer. ACS Catalysis, 2012, 2, 246-260.	5.5	39
161	Supramolecular Selfâ€Assembled Ligands in Asymmetric Transition Metal Catalysis. Israel Journal of Chemistry, 2012, 52, 613-629.	1.0	39
162	Hydrogenation of CO2 to formic acid with iridiumIII(bisMETAMORPhos)(hydride): the role of a dormant fac-IrIII(trihydride) and an active trans-IrIII(dihydride) species. Catalysis Science and Technology, 2016, 6, 404-408.	2.1	39

#	Article	IF	CITATIONS
163	Application of [Co(Corrole)] [–] Complexes in Ring losing C–H Amination of Aliphatic Azides via Nitrene Radical Intermediates. European Journal of Inorganic Chemistry, 2018, 2018, 617-626.	1.0	39
164	Bite angle effect of bidentate P–N ligands in palladium catalysed allylic alkylation â€. Dalton Transactions RSC, 2000, , 1549-1554.	2.3	38
165	Application of Supramolecular Bidentate Hybrid Ligands in Asymmetric Hydroformylation. Chemistry - A European Journal, 2012, 18, 13510-13519.	1.7	38
166	Selective Coâ€Encapsulation Inside an M ₆ L ₄ Cage. Chemistry - A European Journal, 2016, 22, 15468-15474.	1.7	38
167	Conformational Behavior and Binding Properties of Naphthalene-Walled Clips. Chemistry - A European Journal, 1998, 4, 716-722.	1.7	37
168	Core and periphery functionalized dendrimers for transition metal catalysis; a covalent and a non-covalent approach. Reviews in Molecular Biotechnology, 2002, 90, 159-181.	2.9	37
169	Hydroformylation of 1-decene in aqueous medium catalysed by rhodium–alkyl sulfonated diphosphines system in the presence of methylated cyclodextrins. How the flexibility of the diphosphine backbone influences the regioselectivity. New Journal of Chemistry, 2006, 30, 377.	1.4	37
170	SUPRAPhos ligands for the regioselective rhodium catalyzed hydroformylation of styrene forming the linear aldehyde. Dalton Transactions, 2009, , 1801.	1.6	37
171	Dynamic Combinatorial Chemistry in Chemical Catalysis. Israel Journal of Chemistry, 2013, 53, 61-74.	1.0	37
172	Asymmetric Hydrogenation with Highly Active IndolPhos–Rh Catalysts: Kinetics and Reaction Mechanism. Chemistry - A European Journal, 2010, 16, 6509-6517.	1.7	36
173	Self-Assembled Organometallic Nickel Complexes as Catalysts for Selective Dimerization of Ethylene into 1-Butene. Organometallics, 2015, 34, 1139-1142.	1.1	36
174	Gold Functionalized Platinum M ₁₂ L ₂₄ â€Nanospheres and Their Application in Cyclization Reactions. Advanced Synthesis and Catalysis, 2016, 358, 1509-1518.	2.1	36
175	Cofactor Controlled Encapsulation of a Rhodium Hydroformylation Catalyst. Angewandte Chemie - International Edition, 2019, 58, 2696-2699.	7.2	36
176	Ordered mesoporous materials as solid supports for rhodium–diphosphine catalysts with remarkable hydroformylation activity. Chemical Communications, 2010, 46, 6587.	2.2	35
177	Coordination Studies on Supramolecular Chiral Ligands and Application in Asymmetric Hydroformylation. Chemistry - A European Journal, 2012, 18, 7091-7099.	1.7	35
178	Comparison of the Full Catalytic Cycle of Hydroformylation Mediated by Mono―and Bisâ€Ligated Triphenylphosphine–Rhodium Complexes by Using DFT Calculations. ChemCatChem, 2015, 7, 1708-1718.	1.8	35
179	Dynamic Ligand Reactivity in a Rhodium Pincer Complex. Chemistry - A European Journal, 2015, 21, 12683-12693.	1.7	35
180	Phosphinoureas: Cooperative Ligands in Rhodium-Catalyzed Hydroformylation? On the Possibility of a Ligand-Assisted Reductive Elimination of the Aldehyde. Organometallics, 2010, 29, 2413-2421.	1.1	34

#	Article	IF	CITATIONS
181	Self-assembled M ₁₂ L ₂₄ nanospheres as a reaction vessel to facilitate a dinuclear Cu(<scp>i</scp>) catalyzed cyclization reaction. Chemical Science, 2019, 10, 1316-1321.	3.7	34
182	Supramolecular NHC ligands: on the influence of ZnII-templates on the activity of RhI(cod) complexes in â€~carbene polymerization'. Dalton Transactions, 2009, , 8970.	1.6	33
183	Supramolecular Encapsulated Rhodium Catalysts for Branched Selective Hydroformylation of Alkenes at High Temperature. Advanced Synthesis and Catalysis, 2013, 355, 348-352.	2.1	33
184	Dinuclear Palladium Complexes with Two Ligandâ€Centered Radicals and a Single Bridging Ligand: Subtle Tuning of Magnetic Properties. Chemistry - A European Journal, 2015, 21, 5879-5886.	1.7	33
185	SPANphos: A C2-Symmetric trans-Coordinating Diphosphane Ligand. Angewandte Chemie, 2003, 115, 1322-1325.	1.6	32
186	Reaction Progress Kinetic Analysis as a Tool To Reveal Ligand Effects in Ce(IV)-Driven IrCp*-Catalyzed Water Oxidation. ACS Catalysis, 2016, 6, 3418-3427.	5.5	32
187	Photocatalytic Hydrogen Evolution by a Synthetic [FeFe] Hydrogenase Mimic Encapsulated in a Porphyrin Cage. Chemistry - A European Journal, 2018, 24, 16395-16406.	1.7	32
188	How to Control the Rate of Heterogeneous Electron Transfer across the Rim of M ₆ L ₁₂ and M ₁₂ L ₂₄ Nanospheres. Journal of the American Chemical Society, 2020, 142, 8837-8847.	6.6	32
189	Pd-mediated carbenepolymerisation: activity of palladium(<scp>ii</scp>) versus low-valent palladium. Polymer Chemistry, 2011, 2, 422-431.	1.9	31
190	Organic–Inorganic Hybrid Solution-Processed H ₂ -Evolving Photocathodes. ACS Applied Materials & Interfaces, 2015, 7, 19083-19090.	4.0	31
191	Ultrafast Photoinduced Electron Transfer within a Self-Assembled Donorâ [~] Acceptor System. Journal of Physical Chemistry A, 2005, 109, 5248-5256.	1.1	30
192	Activation of Carbon Monoxide by (Me ₃ tpa)Rh and (Me ₃ tpa)Ir. Organometallics, 2009, 28, 1631-1643.	1.1	30
193	Rational Optimization of Supramolecular Catalysts for the Rhodium atalyzed Asymmetric Hydrogenation Reaction. Angewandte Chemie - International Edition, 2017, 56, 13056-13060.	7.2	30
194	Remotely Controlled Iridium atalyzed Asymmetric Hydrogenation of Terminal 1,1â€Diaryl Alkenes. Angewandte Chemie - International Edition, 2013, 52, 8795-8797.	7.2	30
195	Boosting Electrochemical Oxygen Reduction Performance of Iron Phthalocyanine through Axial Coordination Sphere Interaction. ChemSusChem, 2022, 15, .	3.6	30
196	Novel water soluble molecular clips. Towards nanostructures with controlled shape. Chemical Communications, 1996, , 245.	2.2	29
197	Versatile New <i>C</i> ₃ -Symmetric Tripodal Tetraphosphine Ligands; Structural Flexibility to Stabilize Cu ^I and Rh ^I Species and Tune Their Reactivity. Inorganic Chemistry, 2010, 49, 6495-6508.	1.9	29
198	Activation of H2 by a highly distorted RhII complex with a new C3-symmetric tripodal tetraphosphine ligand. Chemical Communications, 2010, 46, 1232.	2.2	29

#	Article	IF	CITATIONS
199	Dynamic Kinetic Resolution of 2â€Phenylpropanal Derivatives to Yield βâ€Chiral Primary Amines <i>via</i> Bioamination. Advanced Synthesis and Catalysis, 2014, 356, 2257-2265.	2.1	29
200	Transition-Metal Catalysis as a Tool for the Covalent Labeling of Proteins. Angewandte Chemie - International Edition, 2006, 45, 1841-1843.	7.2	28
201	Electronic Selectivity Tuning in Titanium(III)-Catalyzed Acetylene Cross-Dimerization Reactions. Organometallics, 2011, 30, 6067-6070.	1.1	28
202	Controlled Synthesis of Functional Copolymers with Blocky Architectures via Carbene Polymerization. Macromolecules, 2012, 45, 3711-3721.	2.2	28
203	Facile Synthesis and Versatile Reactivity of an Unusual Cyclometalated Rhodium(I) Pincer Complex. Chemistry - A European Journal, 2015, 21, 7297-7305.	1.7	28
204	Selective formation of Pt ₁₂ L ₂₄ nanospheres by ligand design. Chemical Science, 2021, 12, 7696-7705.	3.7	28
205	ROTACAT: A Rotating Device Containing a Designed Catalyst for Highly Selective Hydroformylation. Advanced Synthesis and Catalysis, 2001, 343, 201-206.	2.1	27
206	The Assembly of Supramolecular Boxes and Coordination Polymers Based on Bisâ€Zincâ€Salphen Building Blocks. Chemistry - an Asian Journal, 2009, 4, 50-57.	1.7	27
207	Rhodium-P,O-bidentate coordinated ureaphosphine ligands for asymmetric hydrogenation reactions. Dalton Transactions, 2010, 39, 1929.	1.6	27
208	Role of β-H Elimination in Rhodium-Mediated Carbene Insertion Polymerization. Organometallics, 2011, 30, 1094-1101.	1.1	27
209	Nickelâ€Based Dyeâ€Sensitized Photocathode: Towards Proton Reduction Using a Molecular Nickel Catalyst and an Organic Dye. ChemCatChem, 2016, 8, 1392-1398.	1.8	27
210	Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals. Journal of Physical Chemistry C, 2016, 120, 6475-6481.	1.5	27
211	Ureaphosphanes as Hybrid, Anionic or Supramolecular Bidentate Ligands for Asymmetric Hydrogenation Reactions. European Journal of Inorganic Chemistry, 2010, 2010, 2992-2997.	1.0	26
212	On the "Tertiary Structure―of Polyâ€Carbenes; Selfâ€Assembly of sp ³ â€Carbonâ€Based Polyminto Liquidâ€Crystalline Aggregates. Chemistry - A European Journal, 2013, 19, 11577-11589.	ers 1.7	26
213	A different route to functional polyolefins: olefin–carbene copolymerisation. Dalton Transactions, 2013, 42, 9058.	1.6	26
214	Well-Defined BisMETAMORPhos Pd ^I –Pd ^I Complex: Synthesis, Structural Characterization, and Reactivity. Organometallics, 2014, 33, 7293-7298.	1.1	26
215	Dehydrative Crossâ€Coupling Reactions of Allylic Alcohols with Olefins. Chemistry - A European Journal, 2014, 20, 10905-10909.	1.7	26
216	Cofactor-Controlled Chirality of Tropoisomeric Ligand. Organometallics, 2016, 35, 1956-1963.	1.1	26

#	Article	IF	CITATIONS
217	Effect of Ortho Substituents on the Direction of 1,2-Migrations in the Rearrangement of 2-exo-Arylfenchyl Alcohols. Journal of Organic Chemistry, 1998, 63, 2262-2272.	1.7	25
218	Supramolecular Ligands in Gold(I) Catalysis. ChemCatChem, 2013, 5, 1084-1087.	1.8	25
219	Selective Isomerization–Hydroformylation Sequence: A Strategy to Valuable α-Methyl-Branched Aldehydes from Terminal Olefins. ACS Catalysis, 2013, 3, 2939-2942.	5.5	25
220	Reactivity of a Ruthenium–Carbonyl Complex in the Methanol Dehydrogenation Reaction. ChemCatChem, 2016, 8, 2752-2756.	1.8	25
221	IR spectroscopy as a high-throughput screening-technique for enantioselective hydrogen-transfer catalysts. Chemical Communications, 2000, , 683-684.	2.2	24
222	Carbosilane Dendrimeric Carbodiimides: Site Isolation as a Lactamization Tool. Journal of Organic Chemistry, 2006, 71, 1851-1860.	1.7	24
223	Phenol-derived chiral phosphine–phosphite ligands in the rhodium-catalyzed enantioselective hydrogenation of functionalized olefins. Tetrahedron: Asymmetry, 2010, 21, 2671-2674.	1.8	24
224	Evolutionary Catalyst Screening: Iridium atalyzed Imine Hydrogenation. Advanced Synthesis and Catalysis, 2012, 354, 89-95.	2.1	24
225	Palladium(II) Acetate Catalyzed Reductive Heck Reaction of Enones; A Practical Approach. ChemCatChem, 2015, 7, 3923-3927.	1.8	24
226	Hydrogenase Mimics in M ₁₂ L ₂₄ Nanospheres to Control Overpotential and Activity in Protonâ€Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18485-18489.	7.2	24
227	Fineâ€Tuning Ligands for Catalysis Using Supramolecular Strategies. European Journal of Inorganic Chemistry, 2007, 2007, 4653-4662.	1.0	22
228	Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Airâ€Insensitive Electron Acceptors for Artificial Photosynthesis. ChemSusChem, 2015, 8, 3639-3650.	3.6	22
229	Hydrogen Bond Directed <i>ortho</i> ‣elective Câ^'H Borylation of Secondary Aromatic Amides. Angewandte Chemie, 2019, 131, 13173-13177.	1.6	22
230	Redoxâ€Mediated Alcohol Oxidation Coupled to Hydrogen Gas Formation in a Dyeâ€Sensitized Photosynthesis Cell. Chemistry - A European Journal, 2021, 27, 218-221.	1.7	22
231	How to Prepare Kinetically Stable Selfâ€assembled Pt ₁₂ L ₂₄ Nanocages while Circumventing Kinetic Traps. Chemistry - A European Journal, 2021, 27, 12667-12674.	1.7	22
232	A Nobleâ€Metalâ€Free System for Photodriven Catalytic Proton Reduction. ChemSusChem, 2013, 6, 790-793.	3.6	21
233	Synthesis and Photophysical Properties of Porphyrin-Functionalized Molecular Clips. Journal of Organic Chemistry, 1999, 64, 6653-6663.	1.7	20
234	Synergy between chemo- and bio-catalysts in multi-step transformations. Organic and Biomolecular Chemistry, 2009, 7, 2926.	1.5	20

#	Article	IF	CITATIONS
235	Reductive Elimination at an Ortho-Metalated Iridium(III) Hydride Bearing a Tripodal Tetraphosphorus Ligand. Organometallics, 2013, 32, 4284-4291.	1.1	20
236	Catalytic Water Splitting with an Iridium Carbene Complex: A Theoretical Study. Chemistry - A European Journal, 2014, 20, 5358-5368.	1.7	20
237	Iminobisphosphines to (Non-)Symmetrical Diphosphinoamine Ligands: Metal-Induced Synthesis of Diphosphorus Nickel Complexes and Application in Ethylene Oligomerisation Reactions. European Journal of Inorganic Chemistry, 2014, 2014, 3754-3762.	1.0	20
238	CH Activation of Benzene by a Photoactivated Ni ^{II} (azide): Formation of a Transient Nickel Nitrido Complex. Angewandte Chemie, 2015, 127, 7161-7165.	1.6	20
239	Towards a Bioinspired‧ystems Approach for Solar Fuel Devices. ChemPlusChem, 2016, 81, 1024-1027.	1.3	20
240	Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Selfâ€Assembled Nanospheres. Angewandte Chemie, 2018, 130, 11417-11421.	1.6	20
241	Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere. Chemical Communications, 2019, 55, 3081-3084.	2.2	20
242	Rhodium Phosphite Catalysts. Catalysis By Metal Complexes, 2000, , 35-62.	0.6	20
243	Importance of the Reducing Agent in Direct Reductive Heck Reactions. ChemCatChem, 2018, 10, 266-272.	1.8	19
244	Selective surface functionalization generating site-isolated Ir on a MnO _x /N-doped carbon composite for robust electrocatalytic water oxidation. Journal of Materials Chemistry A, 2019, 7, 23098-23104.	5.2	19
245	Balancing Ligand Flexibility versus Rigidity for the Stepwise Selfâ€Assembly of M ₁₂ L ₂₄ via M ₆ L ₁₂ Metal–Organic Cages. Chemistry - A European Journal, 2020, 26, 11960-11965.	1.7	19
246	Protection of Ruthenium Olefin Metathesis Catalysts by Encapsulation in a Selfâ€assembled Resorcinarene Capsule. ChemCatChem, 2020, 12, 4019-4023.	1.8	19
247	A Novel M ₈ L ₆ Cubic Cage That Binds Tetrapyridyl Porphyrins: Cage and Solvent Effects in Cobaltâ€Porphyrinâ€Catalyzed Cyclopropanation Reactions. Chemistry - A European Journal, 2021, 27, 8390-8397.	1.7	19
248	Just Add Water: Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules. Journal of the American Chemical Society, 2021, 143, 16419-16427.	6.6	19
249	Synthesis of carbosilane dendritic wedges and their use for the construction of dendritic receptors. Organic and Biomolecular Chemistry, 2006, 4, 211-223.	1.5	18
250	Heterotopic silver–NHC complexes: from coordination polymers to supramolecular assemblies. Dalton Transactions, 2010, 39, 5432.	1.6	18
251	Supramolecular Hybrid Bidentate Ligands in Asymmetric Hydrogenation. European Journal of Inorganic Chemistry, 2012, 2012, 4684-4693.	1.0	18
252	Synthesis and Characterization of Selfâ€Assembled Chiral Fe ^{II} ₂ L ₃ Cages. Chemistry - A European Journal, 2018, 24, 14693-14700.	1.7	18

#	Article	IF	CITATIONS
253	Origin of the Selectivity and Activity in the Rhodium-Catalyzed Asymmetric Hydrogenation Using Supramolecular Ligands. ACS Catalysis, 2019, 9, 7535-7547.	5.5	18
254	Proton Relay Effects in Pyridyl-Appended Hydrogenase Mimics for Proton Reduction Catalysis. European Journal of Inorganic Chemistry, 2019, 2019, 2498-2509.	1.0	18
255	Reversible multi-electron storage in dual-site redox-active supramolecular cages. Chemical Communications, 2019, 55, 12619-12622.	2.2	18
256	P-Chirogenic Benzo-Fused Phenoxaphosphane: Synthesis, Resolution and Study of the Stereochemical Properties of the Corresponding Palladium Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 1309-1317.	1.0	17
257	Control of Redox Events by Dye Encapsulation Applied to Lightâ€Driven Splitting of Hydrogen Sulfide. Angewandte Chemie, 2017, 129, 11921-11925.	1.6	17
258	Rational Redesign of a Regioselective Hydroformylation Catalyst for 3â€Butenoic Acid by Supramolecular Substrate Orientation. ChemCatChem, 2019, 11, 5322-5329.	1.8	17
259	A [Pd2L4]4+ cage complex for n-octyl-β-d-glycoside recognition. Organic and Biomolecular Chemistry, 2020, 18, 4734-4738.	1.5	17
260	Aqueous Biphasic Dyeâ€Sensitized Photosynthesis Cells for TEMPOâ€Based Oxidation of Glycerol. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
261	Phosphorus Ligand Imaging with Twoâ€Photon Fluorescence Spectroscopy: Towards Rational Catalyst Immobilization. Angewandte Chemie - International Edition, 2010, 49, 5480-5484.	7.2	16

262

#	Article	IF	CITATIONS
271	Reverseâ€Flow Adsorption for Processâ€Integrated Recycling of Homogeneous Transitionâ€Metal Catalysts. Chemistry - A European Journal, 2011, 17, 7460-7471.	1.7	14
272	Bis-(thiosemicarbazonato) Zn(ii) complexes as building blocks for construction of supramolecular catalysts. Dalton Transactions, 2012, 41, 3740.	1.6	14
273	Synthesis, Coordination Chemistry, and Cooperative Activation of H2with Ruthenium Complexes of Proton-Responsive METAMORPhos Ligands. European Journal of Inorganic Chemistry, 2014, 2014, 1826-1835.	1.0	14
274	Enantioselective Synthesis of Tunable Chiral Clickphine P,N-Ligands and Their Application in Ir-Catalyzed Asymmetric Hydrogenation. Journal of Organic Chemistry, 2015, 80, 3634-3642.	1.7	14
275	Intermolecular C–H activation with an Ir-METAMORPhos piano-stool complex – multiple reaction steps at a reactive ligand. Chemical Communications, 2015, 51, 15200-15203.	2.2	14
276	Early stages of catalyst aging in the iridium mediated water oxidation reaction. Physical Chemistry Chemical Physics, 2016, 18, 10931-10940.	1.3	14
277	Photocatalytic Hydrogen Generation by Vesicleâ€Embedded [FeFe]Hydrogenase Mimics: A Mechanistic Study. Chemistry - A European Journal, 2019, 25, 13921-13929.	1.7	14
278	Nickel is a Different Pickle: Trends in Water Oxidation Catalysis for Molecular Nickel Complexes. ChemSusChem, 2020, 13, 6629-6634.	3.6	14
279	Topological prediction of palladium coordination cages. Chemical Science, 2020, 11, 12350-12357.	3.7	14
280	Titanium atalyzed esterification reactions: beyond Lewis acidity. ChemCatChem, 2020, 12, 5229-5235.	1.8	14
281	Regioselective Hydroformylation of Internal and Terminal Alkenes via Remote Supramolecular Control. Chemistry - A European Journal, 2020, 26, 8214-8219.	1.7	14
282	Asymmetric Hydroformylation Using a Rhodium Catalyst Encapsulated in a Chiral Capsule. Chemistry - an Asian Journal, 2020, 15, 867-875.	1.7	14
283	Amino Acid Based Phosphoramidite Ligands for the Rhodiumâ€Catalyzed Asymmetric Hydrogenation. European Journal of Organic Chemistry, 2009, 2009, 6225-6230.	1.2	13
284	Organocatalysis in Confined Spaces. ChemCatChem, 2013, 5, 677-679.	1.8	13
285	Supramolecular bulky phosphines comprising 1,3,5-triaza-7-phosphaadamantane and Zn(salphen)s: structural features and application in hydrosilylation catalysis. Dalton Transactions, 2013, 42, 7595.	1.6	13
286	Scalable and chromatography-free synthesis of 2-(2-formylalkyl)arenecarboxylic acid derivatives through the supramolecularly controlled hydroformylation of vinylarene-2-carboxylic acids. Nature Protocols, 2014, 9, 1183-1191.	5.5	13
287	Formation and Site-Selective Reactivity of a Nonsymmetric Dinuclear Iridium BisMETAMORPhos Complex. Organometallics, 2015, 34, 3209-3215.	1.1	13
288	Wellâ€Defined Dinuclear Gold Complexes for Preorganizationâ€Induced Selective Dual Gold Catalysis. Angewandte Chemie, 2016, 128, 10196-10200.	1.6	13

#	Article	IF	CITATIONS
289	A Functional Hydrogenase Mimic Chemisorbed onto Fluorineâ€Doped Tin Oxide Electrodes: A Strategy towards Water Splitting Devices. ChemSusChem, 2018, 11, 209-218.	3.6	13
290	Phosphine Oxide Based Supramolecular Ligands in the Rhodium-Catalyzed Asymmetric Hydrogenation. Organometallics, 2019, 38, 3961-3969.	1.1	13
291	Lindqvist polyoxometalates as electrolytes in p-type dye sensitized solar cells. Sustainable Energy and Fuels, 2019, 3, 96-100.	2.5	13
292	Bite Angle Effects in Hydroformylation Catalysis. Chinese Journal of Chemistry, 2001, 19, 1-8.	2.6	12
293	Synthesis and Reactivity of Ester-Functionalized 5-Membered RhI-κ2-C,O-Chelates and Their Relevance in Rh(cod)-Mediated Carbene Polymerization. European Journal of Inorganic Chemistry, 2012, 2012, 1437-1444.	1.0	12
294	Catalyst recycling via specific non-covalent adsorption on modified silicas. Dalton Transactions, 2013, 42, 3609.	1.6	12
295	A Fluorescenceâ€Based Screening Protocol for the Identification of Water Oxidation Catalysts. ChemSusChem, 2015, 8, 3057-3061.	3.6	12
296	Robust Benzo[<i>g</i> , <i>h</i> , <i>i</i>]perylenetriimide Dyeâ€Sensitized Electrodes in Airâ€Satu Aqueous Buffer Solution. Chemistry - A European Journal, 2016, 22, 5489-5493.	urated 1.7	12
297	Catalytic Systems for Water Splitting. ChemPlusChem, 2016, 81, 1017-1019.	1.3	12
298	Metalloradical Reactivity of Ru ^I and Ru ^O Stabilized by an Indoleâ€Based Tripodal Tetraphosphine Ligand. Chemistry - A European Journal, 2017, 23, 12709-12713.	1.7	12
299	A Water Soluble Pd ₂ L ₄ Cage for Selective Binding of Neu5Ac. Chemistry - A European Journal, 2021, 27, 13719-13724.	1.7	12
300	Propagation and termination steps in Rh-mediated carbene polymerisation using diazomethane. Dalton Transactions, 2013, 42, 4139.	1.6	11
301	A Mechanistic Study of Direct Activation of Allylic Alcohols in Palladium Catalyzed Amination Reactions. Catalysts, 2015, 5, 349-365.	1.6	11
302	Gold atalyzed Cycloisomerization Reactions within Guanidinium M12L24Nanospheres: the Effect of Local Concentrations. ChemCatChem, 2019, 11, 1458-1464.	1.8	11
303	Spectroscopic and theoretical investigation of the [Fe2(bdt)(CO)6] hydrogenase mimic and some catalyst intermediates. Physical Chemistry Chemical Physics, 2019, 21, 14638-14645.	1.3	11
304	Catalytic Formation of Coordination-Based Self-Assemblies by Halide Impurities. Inorganic Chemistry, 2021, 60, 12498-12505.	1.9	11
305	Ultrafast dynamics in iron tetracarbonyl olefin complexes investigated with two-dimensional vibrational spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 1115-1122.	1.3	10
306	Regioselective Pd-catalyzed hydroamination of substituted dienes. Catalysis Science and Technology, 2013, 3, 1375.	2.1	10

#	Article	IF	CITATIONS
307	An Octaâ€Urea [Pd ₂ L ₄] ⁴⁺ Cage that Selectively Binds to <i>nâ€</i> octylâ€i±â€Dâ€Mannoside. ChemPhysChem, 2021, 22, 1187-1192.	1.0	10
308	Comparison of homogeneous and heterogeneous catalysts in dye-sensitised photoelectrochemical cells for alcohol oxidation coupled to dihydrogen formation. Sustainable Energy and Fuels, 2021, 5, 5707-5716.	2.5	10
309	Phosphorus Functionalized Dendrimers and Hyperbranched Polymers: Is There a Need for Perfect Dendrimers in Catalysis?. Israel Journal of Chemistry, 2009, 49, 79-98.	1.0	9
310	Chiral basketâ€shaped host compounds derived from diphenylglycoluril. Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 65-71.	0.0	9
311	New Endeavors in Gold Catalysis—Size Matters. Angewandte Chemie - International Edition, 2013, 52, 13146-13148.	7.2	9
312	Photo- and Thermal Isomerization of (TP)Fe(CO)Cl ₂ [TP = Bis(2-diphenylphosphinophenyl)phenylphosphine]. Organometallics, 2015, 34, 5009-5014.	1.1	9
313	Metal–organic redox vehicles to encapsulate organic dyes for photocatalytic protons and carbon dioxide reduction. Inorganic Chemistry Frontiers, 2016, 3, 1256-1263.	3.0	9
314	Hydrogenase Mimics in M 12 L 24 Nanospheres to Control Overpotential and Activity in Protonâ€Reduction Catalysis. Angewandte Chemie, 2020, 132, 18643-18647.	1.6	9
315	A phosphoramidite-based [FeFe]H ₂ ase functional mimic displaying fast electrocatalytic proton reduction. Dalton Transactions, 2014, 43, 8363-8367.	1.6	8
316	p-Type dye-sensitized solar cells based on pseudorotaxane mediated charge-transfer. Faraday Discussions, 2019, 215, 393-406.	1.6	8
317	[FeFe]-Hydrogenase Mimic Employing κ2-C,N-Pyridine Bridgehead Catalyzes Proton Reduction at Mild Overpotential. European Journal of Inorganic Chemistry, 2019, 2019, 2510-2517.	1.0	8
318	Supported Catalysts. Catalysis By Metal Complexes, 2006, , 39-72.	0.6	7
319	Bis(metallo) Capsules Based on Two Ionic Diphosphines. Chemistry - an Asian Journal, 2011, 6, 2431-2443.	1.7	7
320	Diphosphine Capsules for Transitionâ€Metal Encapsulation. Chemistry - an Asian Journal, 2011, 6, 2444-2462.	1.7	7
321	Near infrared light-driven water oxidation in a molecule-based artificial photosynthetic device using an upconversion nano-photosensitizer. Chemical Communications, 2015, 51, 13008-13011.	2.2	7
322	Potential―and Bufferâ€Dependent Catalyst Decomposition during Nickelâ€Based Water Oxidation Catalysis. ChemSusChem, 2020, 13, 5625-5631.	3.6	7
323	Unusual Stereochemistry in Complexes of the Form [RhH(CO)2(PPri3)2]â€. Organometallics, 2007, 26, 3265-3268.	1.1	6
324	Coherent Anti-Stokes Raman Scattering Microspectroscopic Kinetic Study of Fast Hydrogen Bond Formation in Microfluidic Devices. Analytical Chemistry, 2013, 85, 8923-8927.	3.2	6

#	Article	IF	CITATIONS
325	Rational Optimization of Supramolecular Catalysts for the Rhodiumâ€Catalyzed Asymmetric Hydrogenation Reaction. Angewandte Chemie, 2017, 129, 13236-13240.	1.6	6
326	Effector enhanced enantioselective hydroformylation. Chemical Communications, 2019, 55, 14151-14154.	2.2	6
327	Redoxâ€Active Supramolecular Heteroleptic M 4 L 2 L′ 2 Assemblies with Tunable Interior Binding Site. Chemistry - A European Journal, 2020, 26, 13241-13248.	1.7	6
328	Mechanistic elucidation of monoalkyltin(<scp>iv</scp>)-catalyzed esterification. Catalysis Science and Technology, 2021, 11, 3326-3332.	2.1	6
329	Design and construction of supramolecular and macromolecular architectures by tandem interactions. Macromolecular Symposia, 1997, 117, 291-304.	0.4	5
330	Novel developments in hydroformylation. Catalysis By Metal Complexes, 2000, , 253-279.	0.6	5
331	Combinatorial Strategies to find New Catalysts for Asymmetric Hydrogenation Based on the Versatile Coordination Chemistry of METAMORPhos Ligands. ChemCatChem, 2015, 7, 3368-3375.	1.8	5
332	3-Methylindole-Based Tripodal Tetraphosphine Ruthenium Complexes in N2 Coordination and Reduction and Formic Acid Dehydrogenation. Inorganics, 2017, 5, 73.	1.2	5
333	Coordination of 3-Methylindole-Based Tripodal Tetraphosphine Ligands to Iron(+II), Cobalt(+II), and Nickel(+II) and Investigations of their Subsequent Two-Electron Reduction. European Journal of Inorganic Chemistry, 2018, 2018, 1254-1265.	1.0	5
334	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	1.6	5
335	Cofactor Controlled Encapsulation of a Rhodium Hydroformylation Catalyst. Angewandte Chemie, 2019, 131, 2722-2725.	1.6	5
336	Controlling the Activity of a Caged Cobaltâ€Porphyrin atalyst in Cyclopropanation Reactions with Peripheral Cage Substituents. European Journal of Inorganic Chemistry, 2021, 2021, 2890-2898.	1.0	4
337	Teaching Bonding in Organometallic Chemistry Using Computational Chemistry. Journal of Chemical Education, 2002, 79, 588.	1.1	3
338	Other Biphasic Concepts: Sections 7.5-7.6. , 2005, , 686-705.		3
339	Dynamic Combinatorial Chemistry for Catalytic Applications. , 0, , 91-108.		3
340	Rhodium(I) entered cyclotriveratrylene. Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 381-386.	0.0	3
341	In Silico Optimization of Charge Separating Dyes for Solar Energy Conversion. ChemSusChem, 0, , .	3.6	3
	The crystal and molecular structure of		

6,8,15,16b,16c,17-hexahydro-16b,16c-diphenyl-7H,16H-6a,7a,15a,16a-tetraazanaphtho[5,6]azulano[2,1,8-ij]napth@f]azule@e-7,16-dio
Journal of Chemical Crystallography, 1996, 26, 365-368.

#	Article	IF	CITATIONS
343	"Clickphine   A Novel and Highly Versatile P,N Ligand Class via Click Chemistry. Organic Letters, 2008, 10, 1323-1323.	2.4	2
344	Control of the Coordination Geometry Around Platinum by a Supramolecular Capsule. European Journal of Inorganic Chemistry, 2011, 2011, 4837-4845.	1.0	2
345	Transition-Metal Encapsulation within Supramolecular Diphosphine Capsules. Current Organic Chemistry, 2013, 17, 1489-1498.	0.9	2
346	New Tetracobalt Cluster Compounds for Electrocatalytic Proton Reduction: Syntheses, Structures, and Reactivity. Chemistry - A European Journal, 2015, 21, 4027-4038.	1.7	2
347	Pâ€N Bridged Dinuclear Rhâ€METAMORPhos Complexes: NMR and Computational Studies. European Journal of Inorganic Chemistry, 2018, 2018, 3761-3769.	1.0	2
348	Demonstrator devices for artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 345-363.	1.6	2
349	Assembly of Encapsulated Transition Metal Catalysts. Angewandte Chemie - International Edition, 2001, 40, 4271-4274.	7.2	2
350	On the Influence of the Bite Angle of Bidentate Phosphane Ligands on theRegioselectivity in Allylic Alkylation. European Journal of Inorganic Chemistry, 1999, 1999, 1237-1241.	1.0	1
351	Balancing Ligand Flexibility versus Rigidity for the Stepwise Selfâ€Assembly of M 12 L 24 via M 6 L 12 Metal–Organic Cages. Chemistry - A European Journal, 2020, 26, 11960-11965.	1.7	1
352	Kinetic studies on Lewis acidic metal polyesterification catalysts – hydrolytic degradation is a key factor for catalytic performance. Catalysis Science and Technology, 2022, 12, 2056-2060.	2.1	1
353	Dendrimers as Support for Recoverable Catalysts and Reagents. ChemInform, 2003, 34, no.	0.1	0
354	New Directions in Supramolecular Transition Metal Catalysis. ChemInform, 2005, 36, no.	0.1	0
355	Rücktitelbild:Remote Supramolecular Control of Catalyst Selectivity in the Hydroformylation of Alkenes (Angew. Chem. 2/2011). Angewandte Chemie, 2011, 123, 354-354.	1.6	0
356	Backside Cover: Remote Supramolecular Control of Catalyst Selectivity in the Hydroformylation of Alkenes (Angew. Chem. Int. Ed. 2/2011). Angewandte Chemie - International Edition, 2011, 50, 554-554.	7.2	0
357	A Fluorescence-Based Screening Protocol for the Identification of Water Oxidation Catalysts. ChemSusChem, 2015, 8, 2997-2997.	3.6	0
358	Frontispiece: Rational Design Rules for Molecular Water Oxidation Catalysts based on Scaling Relationships. Chemistry - A European Journal, 2017, 23, .	1.7	0
359	Beyond artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 422-438.	1.6	0
360	Biological approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 66-83.	1.6	0

#	Article	IF	CITATIONS
361	Peptide cyclisation promoted by supramolecular complex formation. Organic and Biomolecular Chemistry, 2022, 20, 575-578.	1.5	0
362	Aqueous Biphasic Dye‧ensitized Photosynthesis Cells for TEMPOâ€Based Oxidation of Glycerol. Angewandte Chemie, 0, , .	1.6	0