Ildiko Nyilasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1176298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for <i>Fungi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6241-6246.	7.1	4,012
2	In vitro synergistic interactions of the effects of various statins and azoles against some clinically important fungi. FEMS Microbiology Letters, 2010, 307, 175-184.	1.8	63
3	Differentiation of Rhizomucor Species on the Basis of Their Different Sensitivities to Lovastatin. Journal of Clinical Microbiology, 2004, 42, 5400-5402.	3.9	41
4	High-affinity iron permease (FTR1) gene sequence-based molecular identification of clinically important Zygomycetes. Clinical Microbiology and Infection, 2008, 14, 393-397.	6.0	40
5	Data Partitions, Bayesian Analysis and Phylogeny of the Zygomycetous Fungal Family Mortierellaceae, Inferred from Nuclear Ribosomal DNA Sequences. PLoS ONE, 2011, 6, e27507.	2.5	37
6	Lichtheimia Species Exhibit Differences in Virulence Potential. PLoS ONE, 2012, 7, e40908.	2.5	37
7	Agrobacterium tumefaciens-mediated transformation ofMucor circinelloides. Folia Microbiologica, 2005, 50, 415-20.	2.3	31
8	Susceptibility of clinically important dermatophytes against statins and different statin-antifungal combinations. Medical Mycology, 2014, 52, 1-9.	0.7	28
9	In vitro interactions between primycin and different statins in their effects against some clinically important fungi. Journal of Medical Microbiology, 2010, 59, 200-205.	1.8	27
10	Iron Gathering of Opportunistic Pathogenic Fungi. Acta Microbiologica Et Immunologica Hungarica, 2005, 52, 185-197.	0.8	23
11	Presence of double-stranded RNA and virus-like particles in <i>Rhizopus</i> isolates. Canadian Journal of Microbiology, 2001, 47, 443-447.	1.7	22
12	Adaptation to thermotolerance in <i>Rhizopus</i> coincides with virulence as revealed by avian and invertebrate infection models, phylogeny, physiological and metabolic flexibility. Virulence, 2015, 6, 395-403.	4.4	22
13	Are Statins Applicable for the Prevention and Treatment of Zygomycosis?. Clinical Infectious Diseases, 2009, 49, 483-484.	5.8	21
14	Antifungal activity of statins and their interaction with amphotericin B against clinically important Zygomycetes. Acta Biologica Hungarica, 2010, 61, 356-365.	0.7	20
15	Effect of the sesterterpene-type metabolites, ophiobolins A and B, on zygomycetes fungi. FEMS Microbiology Letters, 2010, 313, 135-140.	1.8	17
16	Transcription of the three HMG-CoA reductase genes of Mucor circinelloides. BMC Microbiology, 2014, 14, 93.	3.3	17
17	<i>Agrobacterium tumefaciens</i> â€mediated transformation of the zygomycete fungus <i>Backusella lamprospora</i> . Journal of Basic Microbiology, 2008, 48, 59-64.	3.3	16
18	Cloning of the Rhizomucor miehei 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene and its heterologous expression in Mucor circinelloides. Antonie Van Leeuwenhoek, 2009, 95, 55-64.	1.7	16

Ildiko Nyilasi

#	Article	IF	CITATIONS
19	Phaffia rhodozyma and Xanthophyllomyces dendrorhous : astaxanthin-producing yeasts of biotechnological importance. Acta Alimentaria, 2006, 35, 99-107.	0.7	11
20	Genetic Transformation of Zygomycetes Fungi. , 2010, , 75-94.		9
21	Detection and Molecular Characterization of Novel dsRNA Viruses Related to the Totiviridae Family in Umbelopsis ramanniana. Frontiers in Cellular and Infection Microbiology, 2019, 9, 249.	3.9	9
22	Phylogenetic relationship of the genusGilbertellaand related genera within the order Mucorales based on 5.8 S ribosomal DNA sequences. Acta Biologica Hungarica, 2003, 54, 393-402.	0.7	6
23	Pulsed-Field Gel Electrophoresis: A Versatilef Tool or Analysis of Fungal Genomes. Acta Microbiologica Et Immunologica Hungarica, 2006, 53, 95-104.	0.8	5
24	Integration of a Bacterial Î ² -Carotene Ketolase Gene into the Mucor circinelloides Genome by the Agrobacterium tumefaciens-Mediated Transformation Method. Methods in Molecular Biology, 2012, 898, 123-132.	0.9	5
25	Presence of double-stranded RNA and virus-like particles in <i>Rhizopus</i> isolates. Canadian Journal of Microbiology, 2001, 47, 443-447.	1.7	5
26	Molecular studies on zygomycetes fungi causing opportunistic infections. Reviews in Medical Microbiology, 2008, 19, 39-46.	0.9	4
27	Characterization of Four Novel dsRNA Viruses Isolated from MucorÂhiemalis Strains. Viruses, 2021, 13, 2319.	3.3	4
28	Variability of isozyme and rapd markers among isolates of mucor genevenesis. Acta Biologica Hungarica, 2001, 52, 365-373.	0.7	2
29	Improvement of Industrially Relevant Biological Activities in Mucoromycotina Fungi. Fungal Biology, 2016, , 97-118.	0.6	1