Byung-Wook Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1176204/publications.pdf

Version: 2024-02-01

394421 345221 1,535 80 19 36 citations g-index h-index papers 80 80 80 1629 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Quasi-Balanced Power Amplifier With Feedforward Linearization. IEEE Microwave and Wireless Components Letters, 2022, 32, 312-315.	3.2	5
2	Prognosis and Sensitivity of Adjuvant Chemotherapy in Mucinous Colorectal Adenocarcinoma without Distant Metastasis. Cancers, 2022, 14, 1297.	3.7	8
3	Embedded-IC package using Si-interposer for mmWave Applications. , 2022, , .		O
4	A 28-GHz Full-Duplex Phased Array Front-End Using Two Cross-Polarized Arrays and a Canceller. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1127-1135.	4.6	11
5	Prognostic implication of systemic inflammatory markers in young patients with resectable colorectal cancer. Annals of Surgical Treatment and Research, 2021, 100, 25.	1.0	7
6	Automotive Electromagnetic Compatibility Standard Specific Pulse Driving Method for Advanced In-Cell Touch Sensor. IEEE Sensors Journal, 2021, 21, 7825-7832.	4.7	1
7	A 20–36-GHz Voltage-Controlled Analog Distributed Attenuator With a Wide Attenuation Range and Low Phase Imbalance. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2485-2493.	4.6	11
8	A Frequency Tunable Circulator With 70-dB Isolation Using Reflection Coefficient Controller for Arbitrary Load Impedance. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3797-3803.	4.6	2
9	Layered Aluminum for Electromagnetic Wave Absorber with Near-Zero Reflection. Nano Letters, 2021, 21, 1132-1140.	9.1	20
10	Improved Rotating-Element Electric-Field Vector Method for Fast Far-Field Phased Array Calibration. IEEE Transactions on Antennas and Propagation, 2021, 69, 8021-8026.	5.1	10
11	Delay-Sum Group Delay Controller With Low-Loss and Low-Phase Variation. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 825-832.	4.6	3
12	Development and validation of novel scoring system for the prediction of disease recurrence following resection of colorectal liver metastasis. Asian Journal of Surgery, 2020, 43, 438-446.	0.4	10
13	Circularly Polarized T-Shaped Slot Waveguide Array Antenna for Satellite Communications. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 317-321.	4.0	17
14	A Wideband True-Time-Delay Phase Shifter with 100% Fractional Bandwidth Using 28 nm CMOS. , 2020, , .		4
15	A 26GHz CMOS 3× Subharmonic Mixer With a Fundamental Frequency Rejection Technique. IEEE Access, 2020, 8, 122986-122996.	4.2	1
16	Demonstration of Self-Interference Antenna Suppression and RF Cancellation for Full Duplex MIMO Communications., 2020,,.		8
17	A Compact 3–30-GHz 68.5-ps CMOS True-Time Delay for Wideband Phased Array Systems. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 5371-5380.	4. 6	10
18	A 28-GHz Full Duplex Front-End and Canceller Using Two Cross-Polarized 64-Element Phased Arrays., 2020,,.		2

#	Article	IF	CITATIONS
19	Low-Loss Continuous True Time Delay with Delay Summing. , 2020, , .		4
20	A Compact <i>Ka</i> -Band 4-bit Phase Shifter With Low Group Delay Deviation. IEEE Microwave and Wireless Components Letters, 2020, 30, 414-416.	3.2	45
21	Ultrafast 27 GHz cutoff frequency in vertical WSe2 Schottky diodes with extremely low contact resistance. Nature Communications, 2020, 11, 1574.	12.8	39
22	A 28-GHz Reconfigurable SP4T Switch Network for a Switched Beam System in 65-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2057-2064.	4.6	14
23	A Widely Tunable Compact Bandpass Filter Based on a Switched Varactor-Tuned Resonator. IEEE Access, 2019, 7, 95178-95185.	4.2	17
24	Wideband $180 \hat{A}^\circ$ Phase Shifter Using Parallel-Coupled Three-Line. IEEE Microwave and Wireless Components Letters, 2019, 29, 89-91.	3.2	16
25	Compact mm-Wave Bandpass Filters Using Silicon Integrated Passive Device Technology. IEEE Microwave and Wireless Components Letters, 2019, 29, 638-640.	3.2	22
26	Ka-Band CMOS Absorptive SP4T Switch With One-Third Miniaturization. , 2019, , .		10
27	A 26-GHz transmitter front-end using double quadrature architecture. PLoS ONE, 2019, 14, e0216474.	2.5	3
28	Megahertz-wave-transmitting conducting polymer electrode for device-to-device integration. Nature Communications, 2019, 10, 653.	12.8	15
29	Si-Embedded IC Package for W-band Applications: Interconnection Analysis. , 2019, , .		3
30	Analysis of Self-Interference Cancellation and Experimental Results of 2 $\rm \widetilde{A}-2$ MIMO In-Band Full-Duplex Radio Front-End. , 2019, , .		1
31	A 7-GHz CMOS Bidirectional Variable Gain Amplifier With Low Gain and Phase Imbalances. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 2669-2678.	5.4	10
32	A highly selective UWB bandpass filter using stepped impedance stubs. International Journal of Microwave and Wireless Technologies, 2018, 10, 301-307.	1.9	4
33	X-band T/R switch with body-floating multi-gate PDSOI NMOS transistors. Solid-State Electronics, 2018, 141, 69-73.	1.4	1
34	Pseudo Random Pulse Driven Advanced In-Cell Touch Screen Panel for Spectrum Spread Electromagnetic Interference. IEEE Sensors Journal, 2018, 18, 3669-3676.	4.7	1
35	Surgical excision for nonâ€familial hypertrophic Darier's disease. ANZ Journal of Surgery, 2018, 88, E77-E78.	0.7	4
36	Anatomical distribution and detection rate of colorectal neoplasms according to age in the colonoscopic screening of a Korean population. Annals of Surgical Treatment and Research, 2018, 94, 36.	1.0	10

#	Article	IF	CITATIONS
37	A Compact Tunable Bandpass Filter Using Switchable Varactor-Tuned Dual-Mode Resonator., 2018,,.		2
38	Silicon-core Coaxial Through Silicon Via for Low-loss RF Si-interposer. IEEE Microwave and Wireless Components Letters, 2017, 27, 428-430.	3.2	17
39	Two Section Wideband 90° Hybrid Coupler Using Parallel-Coupled Three-Line. IEEE Microwave and Wireless Components Letters, 2017, 27, 548-550.	3.2	49
40	2x2 mimo in-band full-duplex radio front-end with 50 db self-interference cancellation in 90 mHz bandwidth. , 2017, , .		6
41	A study on EMI generation from a capacitive touch screen panel. , 2017, , .		5
42	Ka-band up-conversion mixer with inductive degeneration. , 2017, , .		6
43	RF Lens-Embedded Massive MIMO Systems: Fabrication Issues and Codebook Design. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 2256-2271.	4.6	43
44	High Power Ku-Band T/R and SP4T Switches in SOI CMOS. Journal of Electromagnetic Waves and Applications, 2016, 30, 728-739.	1.6	5
45	A compact switched beam-forming network using silicon IPD technology for low-cost 5G communication. , 2016, , .		1
46	Smart Small Cell with Hybrid Beamforming for 5G: Theoretical Feasibility and Prototype Results. IEEE Wireless Communications, 2016, 23, 124-131.	9.0	47
47	DC–Xâ€band highâ€power SOI CMOS T/R switch. Electronics Letters, 2016, 52, 937-939.	1.0	8
48	Results and trade-off of self-interference cancellation in a full-duplex radio front-end. , 2015, , .		2
49	C-band bidirectional amplifier with switchable matching circuits. , 2015, , .		2
50	Phased array antennas and antenna interference control for hybrid adaptive beam-forming., 2015,,.		0
51	Flexible graphene based microwave attenuators. Nanotechnology, 2015, 26, 055201.	2.6	11
52	On-Chip T/R Switchable Balun for 5- to 6-GHz WLAN Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62, 6-10.	3.0	14
53	Proton irradiation energy dependence of defect formation in graphene. Applied Surface Science, 2015, 344, 52-56.	6.1	22
54	Nitrogen-doped ZnO/n-Si core–shell nanowire photodiode prepared by atomic layer deposition. Materials Science in Semiconductor Processing, 2015, 33, 154-160.	4.0	19

#	Article	IF	Citations
55	1-TX and 2-RX in-band full-duplex radio front-end with 60 dB self-interference cancellation. , 2015, , .		6
56	W-Band CMOS 4-Bit Phase Shifter for High Power and Phase Compression Points. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62, 1-5.	3.0	39
57	Microstrip lowpass–highpass diplexer for a quadplexer application. Microwave and Optical Technology Letters, 2014, 56, 2026-2028.	1.4	3
58	A dualâ€band subharmonic drain mixer based on single local oscillator. Microwave and Optical Technology Letters, 2014, 56, 2848-2851.	1.4	1
59	Miniaturisation method for coupledâ€line bandpass filters with identical and minimal number of reactive elements. IET Microwaves, Antennas and Propagation, 2014, 8, 1192-1197.	1.4	10
60	V-W Band CMOS Distributed Step Attenuator With low Phase Imbalance. IEEE Microwave and Wireless Components Letters, 2014, 24, 548-550.	3.2	35
61	Graphene as an atomically thin barrier to Cu diffusion into Si. Nanoscale, 2014, 6, 7503-7511.	5.6	89
62	Capillary Force-Induced Glue-Free Printing of Ag Nanoparticle Arrays for Highly Sensitive SERS Substrates. ACS Applied Materials & Substrates. ACS ACS Applied Materials & Substrates. ACS	8.0	43
63	ZnO homojunction core–shell nanorods ultraviolet photo-detecting diodes prepared by atomic layer deposition. Sensors and Actuators A: Physical, 2014, 210, 197-204.	4.1	17
64	Application of Stepped-Impedance Technique for Bandwidth Control of Dual-Band Filters. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 2106-2114.	4.6	12
65	Growing occult synchronous adrenal metastasis from rectal cancer after surgery and during adjuvant chemotherapy: A Case Report. Open Medicine (Poland), 2011, 6, 120-122.	1.3	0
66	A single-chip 36-38 GHz 4-element transmit/receive phased-array with 5-bit amplitude and phase control. , 2009, , .		9
67	A Compact DC-30 GHz 0.13-um CMOS SP4T Switch. , 2009, , .		8
68	Single and Four-Element \$Ka\$-Band Transmit/Receive Phased-Array Silicon RFICs With 5-bit Amplitude and Phase Control. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 3534-3543.	4.6	138
69	Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends. IEEE Journal of Solid-State Circuits, 2008, 43, 2239-2250.	5.4	178
70	\$Ka\$-Band Low-Loss and High-Isolation Switch Design in 0.13-\$mu{hbox {m}}\$ CMOS. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 1364-1371.	4.6	86
71	Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA. IEEE Microwave and Wireless Components Letters, 2008, 18, 272-274.	3.2	38
72	5–6 GHz SPDT switchable balun using CMOS transistors. , 2008, , .		3

#	ARTICLE	IF	CITATION
73	A Ka-Band BiCMOS T/R Module for Phased Array Applications. Compound Semiconductor Integrated Circuit Symposium (CSICS), IEEE, 2008, , .	0.0	5
74	A 10–50-GHz CMOS Distributed Step Attenuator With Low Loss and Low Phase Imbalance. IEEE Journal of Solid-State Circuits, 2007, 42, 2547-2554.	5.4	84
75	SiGe T/R Modules for Ka-Band Phased Arrays. , 2007, , .		25
76	Ka-Band BiCMOS 4-Bit Phase Shifter with Integrated LNA for Phased Array T/R Modules. , 2007, , .		19
77	Ka-Band Low-Loss and High-Isolation 0.13 <i>\hat{l}/4</i> m CMOS SPST/SPDT Switches Using High Substrate Resistance. , 2007, , .		12
78	Ka-Band SiGe HBT Low Noise Amplifier Design for Simultaneous Noise and Input Power Matching. IEEE Microwave and Wireless Components Letters, 2007, 17, 891-893.	3.2	44
79	A low-loss silicon-on-silicon DC-110-GHz resonance-free package. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 710-716.	4.6	21
80	W-band low-loss wafer-scale package for RF MEMS. , 2005, , .		2