
Charles Steenbergen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11761718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms Underlying Acute Protection From Cardiac Ischemia-Reperfusion Injury. Physiological Reviews, 2008, 88, 581-609.	13.1	1,220
2	Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20976-20981.	3.3	454
3	2011 Consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovascular Pathology, 2012, 21, 245-274.	0.7	423
4	Engraftment, Differentiation, and Functional Benefits of Autologous Cardiosphere-Derived Cells in Porcine Ischemic Cardiomyopathy. Circulation, 2009, 120, 1075-1083.	1.6	383
5	Diazoxide-Induced Cardioprotection Requires Signaling Through a Redox-Sensitive Mechanism. Circulation Research, 2001, 88, 802-809.	2.0	356
6	Preconditioning Results in <i>S</i> -Nitrosylation of Proteins Involved in Regulation of Mitochondrial Energetics and Calcium Transport. Circulation Research, 2007, 101, 1155-1163.	2.0	339
7	Phosphorylation of Glycogen Synthase Kinase-3β During Preconditioning Through a Phosphatidylinositol-3-Kinase–Dependent Pathway Is Cardioprotective. Circulation Research, 2002, 90, 377-379.	2.0	334
8	Ischemic Preconditioning Activates Phosphatidylinositol-3-Kinase Upstream of Protein Kinase C. Circulation Research, 2000, 87, 309-315.	2.0	315
9	Nuclear miRNA Regulates the Mitochondrial Genome in the Heart. Circulation Research, 2012, 110, 1596-1603.	2.0	298
10	Hypercontractile Female Hearts Exhibit Increased S -Nitrosylation of the L-Type Ca 2+ Channel α1 Subunit and Reduced Ischemia/Reperfusion Injury. Circulation Research, 2006, 98, 403-411.	2.0	272
11	Sex Differences in the Phosphorylation of Mitochondrial Proteins Result in Reduced Production of Reactive Oxygen Species and Cardioprotection in Females. Circulation Research, 2010, 106, 1681-1691.	2.0	267
12	Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemiaâ€reperfusion injury. FASEB Journal, 2004, 18, 1031-1033.	0.2	237
13	Intramyocardial Injection of Autologous Cardiospheres or Cardiosphere-Derived Cells Preserves Function and Minimizes Adverse Ventricular Remodeling in Pigs With Heart Failure Post-Myocardial Infarction. Journal of the American College of Cardiology, 2011, 57, 455-465.	1.2	222
14	Preconditioning: The Mitochondrial Connection. Annual Review of Physiology, 2007, 69, 51-67.	5.6	201
15	Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2005, 38, 289-297.	0.9	198
16	Molecular Cloning, Expression, and Functional Significance of a Cytochrome P450 Highly Expressed in Rat Heart Myocytes. Journal of Biological Chemistry, 1997, 272, 12551-12559.	1.6	197
17	S-Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress. Antioxidants and Redox Signaling, 2006, 8, 1693-1705.	2.5	197
18	Gender-based differences in mechanisms of protection in myocardial ischemia–reperfusion injury. Cardiovascular Research, 2007, 75, 478-486.	1.8	197

#	Article	IF	CITATIONS
19	Estrogen receptor-β mediates male-female differences in the development of pressure overload hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H469-H476.	1.5	187
20	Overexpression of the Cardiac Na ⁺ /Ca ²⁺ Exchanger Increases Susceptibility to Ischemia/Reperfusion Injury in Male, but Not Female, Transgenic Mice. Circulation Research, 1998, 83, 1215-1223.	2.0	184
21	Transgenic Expression of Bcl-2 Modulates Energy Metabolism, Prevents Cytosolic Acidification During Ischemia, and Reduces Ischemia/Reperfusion Injury. Circulation Research, 2004, 95, 734-741.	2.0	183
22	Glycogen Synthase Kinase 3 Inhibition Slows Mitochondrial Adenine Nucleotide Transport and Regulates Voltage-Dependent Anion Channel Phosphorylation. Circulation Research, 2008, 103, 983-991.	2.0	171
23	The NHLBI-Sponsored Consortium for preclinicAl assESsment of cARdioprotective Therapies (CAESAR). Circulation Research, 2015, 116, 572-586.	2.0	164
24	Cysteine 203 of Cyclophilin D Is Critical for Cyclophilin D Activation of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 2011, 286, 40184-40192.	1.6	163
25	Simultaneous Measurement of Protein Oxidation and <i>S</i> -Nitrosylation During Preconditioning and Ischemia/Reperfusion Injury With Resin-Assisted Capture. Circulation Research, 2011, 108, 418-426.	2.0	150
26	Cardiac-Specific Ablation of the Na + -Ca 2+ Exchanger Confers Protection Against Ischemia/Reperfusion Injury. Circulation Research, 2005, 97, 916-921.	2.0	148
27	Endomyocardial Biopsy Characterization of HeartÂFailure With Preserved EjectionÂFraction and Prevalence of Cardiac Amyloidosis. JACC: Heart Failure, 2020, 8, 712-724.	1.9	138
28	Characterization of potential <i>S</i> -nitrosylation sites in the myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1327-H1335.	1.5	129
29	miR-181c Regulates the Mitochondrial Genome, Bioenergetics, and Propensity for Heart Failure In Vivo. PLoS ONE, 2014, 9, e96820.	1.1	128
30	Estrogen Receptor-β Activation Results in S-Nitrosylation of Proteins Involved in Cardioprotection. Circulation, 2009, 120, 245-254.	1.6	127
31	CYP2J Subfamily Cytochrome P450s in the Gastrointestinal Tract: Expression, Localization, and Potential Functional Significance. Molecular Pharmacology, 1997, 51, 931-943.	1.0	125
32	Creatine kinase–mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. Journal of Clinical Investigation, 2012, 122, 291-302.	3.9	117
33	Mechanisms of erythropoietinâ€mediated cardioprotection during ischemiaâ€reperfusion injury: role of protein kinase C and phosphatidylinositol 3â€kinase signaling. FASEB Journal, 2005, 19, 1323-1325.	0.2	115
34	A Redox-Based Mechanism for Cardioprotection Induced by Ischemic Preconditioning in Perfused Rat Heart. Circulation Research, 1995, 77, 424-429.	2.0	110
35	The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; relationship to ischemic preconditioning. Basic Research in Cardiology, 2002, 97, 276-285.	2.5	104
36	Exosomal MicroRNA-15a Transfer from the Pancreas Augments Diabetic Complications by Inducing Oxidative Stress. Antioxidants and Redox Signaling, 2017, 27, 913-930.	2.5	100

#	Article	IF	CITATIONS
37	Cardioprotection and Myocardial Reperfusion. Circulation Research, 2013, 113, 464-477.	2.0	99
38	Sodium Regulation During Ischemia Versus Reperfusion and Its Role in Injury. Circulation Research, 1999, 84, 1469-1470.	2.0	97
39	Treatment with an estrogen receptor-beta-selective agonist is cardioprotective. Journal of Molecular and Cellular Cardiology, 2007, 42, 769-780.	0.9	97
40	S-nitrosylation: A radical way to protect the heart. Journal of Molecular and Cellular Cardiology, 2012, 52, 568-577.	0.9	92
41	Ion Transport and Energetics During Cell Death and Protection. Physiology, 2008, 23, 115-123.	1.6	85
42	ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1271-H1280.	1.5	85
43	Expression of Activated PKC Epsilon (PKC Ϊμ) Protects the Ischemic Heart, without Attenuating Ischemic H+ Production. Journal of Molecular and Cellular Cardiology, 2002, 34, 361-367.	0.9	79
44	Signaling by S-nitrosylation in the heart. Journal of Molecular and Cellular Cardiology, 2014, 73, 18-25.	0.9	79
45	Preconditioning Enhanced Glucose Uptake Is Mediated by p38 MAP Kinase Not by Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 2000, 275, 11981-11986.	1.6	78
46	Inhibition of p38 MAPK α/l² reduces ischemic injury and does not block protective effects of preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H499-H508.	1.5	78
47	Ablation of PLB exacerbates ischemic injury to a lesser extent in female than male mice: protective role of NO. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H683-H690.	1.5	75
48	Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovascular Research, 2015, 106, 227-236.	1.8	74
49	Divergent Effects of miRâ€181 Family Members on Myocardial Function Through Protective Cytosolic and Detrimental Mitochondrial microRNA Targets. Journal of the American Heart Association, 2017, 6, .	1.6	74
50	Mitochondrial Permeability Transition Pore and Calcium Handling. Methods in Molecular Biology, 2012, 810, 235-242.	0.4	72
51	Measurement of <i>S</i> -Nitrosylation Occupancy in the Myocardium With Cysteine-Reactive Tandem Mass Tags. Circulation Research, 2012, 111, 1308-1312.	2.0	70
52	Ca ²⁺ loading and adrenergic stimulation reveal male/female differences in susceptibility to ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H481-H489.	1.5	68
53	The role of βâ€Adrenergic Receptor Signaling in Cardioprotection. FASEB Journal, 2005, 19, 983-985.	0.2	68
54	H2S Increases Survival during Sepsis: Protective Effect of CHOP Inhibition. Journal of Immunology, 2014, 192, 1806-1814.	0.4	68

#	Article	IF	CITATIONS
55	Overexpression of the Cardiac β ₂ -Adrenergic Receptor and Expression of a β-Adrenergic Receptor Kinase-1 (βARK1) Inhibitor Both Increase Myocardial Contractility but Have Differential Effects on Susceptibility to Ischemic Injury. Circulation Research, 1999, 85, 1077-1084.	2.0	66
56	Cardioprotection in females: a role for nitric oxide and altered gene expression. Heart Failure Reviews, 2007, 12, 293-300.	1.7	65
57	Cyclophilin D Modulates Mitochondrial Acetylome. Circulation Research, 2013, 113, 1308-1319.	2.0	62
58	Disruption of Caveolae Blocks Ischemic Preconditioning-Mediated S-Nitrosylation of Mitochondrial Proteins. Antioxidants and Redox Signaling, 2012, 16, 45-56.	2.5	61
59	S-nitrosylation of TRIM72 at cysteine 144 is critical for protection against oxidation-induced protein degradation and cell death. Journal of Molecular and Cellular Cardiology, 2014, 69, 67-74.	0.9	61
60	Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2657-H2662.	1.5	60
61	miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling. PLoS ONE, 2017, 12, e0174108.	1.1	60
62	Regulation of the Ca ²⁺ Gradient Across the Sarcoplasmic Reticulum in Perfused Rabbit Heart. Circulation Research, 1998, 83, 898-907.	2.0	59
63	Essential role of nitric oxide in acute ischemic preconditioning: S-Nitros(yl)ation versus sGC/cGMP/PKG signaling?. Free Radical Biology and Medicine, 2013, 54, 105-112.	1.3	59
64	Pivotal Role of mTORC2 and Involvement of Ribosomal Protein S6 in Cardioprotective Signaling. Circulation Research, 2014, 114, 1268-1280.	2.0	59
65	Inhibition of CSK-3β as a target for cardioprotection: the importance of timing, location, duration and degree of inhibition. Expert Opinion on Therapeutic Targets, 2005, 9, 447-456.	1.5	56
66	Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H268-H276.	1.5	55
67	Overexpression of A ₃ adenosine receptors decreases heart rate, preserves energetics, and protects ischemic hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1562-H1568.	1.5	54
68	Skeletal muscle ATP kinetics are impaired in frail mice. Age, 2014, 36, 21-30.	3.0	54
69	Cardioprotection leads to novel changes in the mitochondrial proteome. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H75-H91.	1.5	53
70	Role of Lipoxygenase Metabolites in Ischemic Preconditioning. Circulation Research, 1995, 76, 457-467.	2.0	53
71	G Protein-Coupled Receptor Internalization Signaling Is Required for Cardioprotection in Ischemic Preconditioning. Circulation Research, 2004, 94, 1133-1141.	2.0	51
72	What makes the mitochondria a killer? Can we condition them to be less destructive?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1302-1308.	1.9	51

#	Article	IF	CITATIONS
73	Male and female mice overexpressing the β2-adrenergic receptor exhibit differences in ischemia/reperfusion injury: role of nitric oxide. Cardiovascular Research, 2002, 53, 662-671.	1.8	50
74	Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation. Cardiovascular Research, 2016, 110, 96-106.	1.8	49
75	Postconditioning leads to an increase in protein <i>S</i> -nitrosylation. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H825-H832.	1.5	48
76	Glibenclamide does not abolish the protective effect of preconditioning on stunning in the isolated perfused rat heart. Cardiovascular Research, 1993, 27, 630-637.	1.8	46
77	Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity. PLoS ONE, 2013, 8, e74675.	1.1	45
78	Glyceraldehyde-3-Phosphate Dehydrogenase Acts as a Mitochondrial Trans-S-Nitrosylase in the Heart. PLoS ONE, 2014, 9, e111448.	1.1	45
79	Estrogen regulation of protein expression and signaling pathways in the heart. Biology of Sex Differences, 2014, 5, 6.	1.8	43
80	Bcl-2 Regulation of Mitochondrial Energetics. Trends in Cardiovascular Medicine, 2005, 15, 283-290.	2.3	41
81	Overexpression of the Na+/H+ exchanger and ischemia-reperfusion injury in the myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2237-H2247.	1.5	41
82	Integration and Regression of Implanted Engineered Human Vascular Networks During Deep Wound Healing. Stem Cells Translational Medicine, 2013, 2, 297-306.	1.6	41
83	Histological Evidence of Angiogenesis 9 Months After Transmyocardial Laser Revascularization. Circulation, 2001, 103, 469-471.	1.6	38
84	Characterization of the sex-dependent myocardial <i>S</i> -nitrosothiol proteome. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H505-H515.	1.5	35
85	Ischemic preconditioning attenuates mitochondrial localization of PTEN induced by ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2177-H2186.	1.5	34
86	Leukocyte-type 12-lipoxygenase-deficient mice show impaired ischemic preconditioning-induced cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1963-H1969.	1.5	31
87	Mechanism of Cardioprotection: What Can We Learn from Females?. Pediatric Cardiology, 2011, 32, 354-359.	0.6	30
88	Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H844-H852.	1.5	30
89	Cardioprotection and altered mitochondrial adenine nucleotide transport. Basic Research in Cardiology, 2009, 104, 149-156.	2.5	29
90	Lipoxygenase metabolism of arachidonic acid in ischemic preconditioning and PKC-induced protection in heart. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H2094-H2101.	1.5	28

#	Article	IF	CITATIONS
91	Lack of Relationship Between Serum Cardiac Troponin I Level and Giant Cell Myocarditis Diagnosis and Outcomes. Journal of Cardiac Failure, 2016, 22, 583-585.	0.7	28
92	Cause of Death and Sudden Cardiac Death After Heart Transplantation. American Journal of Clinical Pathology, 2003, 119, 740-748.	0.4	27
93	Does the voltage dependent anion channel modulate cardiac ischemia–reperfusion injury?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1451-1456.	1.4	26
94	Male/female differences in intracellular Na+regulation during ischemia/reperfusion in mouse heart. Journal of Molecular and Cellular Cardiology, 2004, 37, 747-753.	0.9	25
95	Protein kinase C and preconditioning: role of the sarcoplasmic reticulum. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2484-H2490.	1.5	25
96	Regulation of Mitochondrial Ca ²⁺ Uptake. Annual Review of Physiology, 2021, 83, 107-126.	5.6	25
97	VAMP-1, VAMP-2, and syntaxin-4 regulate ANP release from cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2010, 49, 791-800.	0.9	24
98	Strengthening the Skin with Topical Delivery of Keratinocyte Growth Factor-1 Using a Novel DNA Plasmid. Molecular Therapy, 2014, 22, 752-761.	3.7	24
99	Genetic testing improves identification of transthyretin amyloid (ATTR) subtype in cardiac amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 92-95.	1.4	24
100	Increased Interleukin 18-Dependent Immune Responses Are Associated With Myopericarditis After COVID-19 mRNA Vaccination. Frontiers in Immunology, 2022, 13, 851620.	2.2	24
101	Decreased intracellular pH is not due to increased H ⁺ extrusion in preconditioned rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2257-H2262.	1.5	23
102	The Correlation of Mononuclear Cell Phenotype in Endomyocardial Biopsies with Clinical History and Cardiac Dysfunction. American Journal of Clinical Pathology, 1989, 91, 37-44.	0.4	22
103	Is Na/Ca Exchange during Ischemia and Reperfusion Beneficial or Detrimental?. Annals of the New York Academy of Sciences, 2002, 976, 421-430.	1.8	22
104	Does Inhibition of Glycogen Synthase Kinase Protect in Mice?. Circulation Research, 2008, 103, 226-228.	2.0	22
105	Mitochondrial adenine nucleotide transport and cardioprotection. Journal of Molecular and Cellular Cardiology, 2012, 52, 448-453.	0.9	18
106	miRâ€181c Activates Mitochondrial Calcium Uptake by Regulating MICU1 in the Heart. Journal of the American Heart Association, 2019, 8, e012919.	1.6	18
107	Sodium Nitrite Fails to Limit Myocardial Infarct Size: Results from the CAESAR Cardioprotection Consortium (LB645). FASEB Journal, 2014, 28, LB645.	0.2	18
108	Adenosine A1 receptor activation increases myocardial protein S-nitrosothiols and elicits protection from ischemia-reperfusion injury in male and female hearts. PLoS ONE, 2017, 12, e0177315.	1.1	18

#	Article	IF	CITATIONS
109	Does p53 Inhibition Suppress Myocardial Ischemia–Reperfusion Injury?. Journal of Cardiovascular Pharmacology and Therapeutics, 2018, 23, 350-357.	1.0	17
110	Aspergillus Infection of a Permanent Ventricular Pacing Lead. PACE - Pacing and Clinical Electrophysiology, 1984, 7, 361-366.	0.5	16
111	Acute inhibition of CSK causes mitochondrial remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2439-H2445.	1.5	15
112	Administration of Sildenafil at Reperfusion Fails to Reduce Infarct Size: Results from the CAESAR Cardioprotection Consortium (LB650). FASEB Journal, 2014, 28, LB650.	0.2	15
113	Preconditioning: is the Akt-ion in the PI3K pathway?. Journal of Molecular and Cellular Cardiology, 2003, 35, 1021-1025.	0.9	14
114	Deletion of the microRNA-degrading nuclease, translin/trax, prevents pathogenic vascular stiffness. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1116-H1124.	1.5	13
115	Molecular Signature of Nitroso–Redox Balance in Idiopathic Dilated Cardiomyopathies. Journal of the American Heart Association, 2015, 4, e002251.	1.6	12
116	Baseline Characteristics Predict the Presence of Amyloid on Endomyocardial Biopsy. Journal of Cardiac Failure, 2017, 23, 340-344.	0.7	12
117	Nuclear-mitochondrial communication involving miR-181c plays an important role in cardiac dysfunction during obesity. Journal of Molecular and Cellular Cardiology, 2020, 144, 87-96.	0.9	12
118	Signalosomes: delivering cardioprotective signals from GPCRs to mitochondria. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H920-H922.	1.5	11
119	Sildenafil treatment attenuates ventricular remodeling in an experimental model of aortic regurgitation. SpringerPlus, 2015, 4, 592.	1.2	11
120	Did a Classic Preconditioning Study Provide a Clue to the Identity of the Mitochondrial Permeability Transition Pore?. Circulation Research, 2013, 113, 852-855.	2.0	6
121	Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure. Circulation Research, 2022, , CIRCRESAHA121319648.	2.0	6
122	Effect of p38 MAP kinases on contractility and ischemic injury in intact heart. Acta Physiologica Hungarica, 2009, 96, 307-323.	0.9	5
123	Pathology Residency Program Special Expertise Tracks Meet the Needs of an Evolving Field. Academic Pathology, 2021, 8, 23742895211037034.	0.7	4
124	In Vivo Nanovector Delivery of a Heart-specific MicroRNA-sponge. Journal of Visualized Experiments, 2018, , .	0.2	3
125	Hibernating Squirrels. Anesthesiology, 2016, 124, 1215-1217.	1.3	2
126	Maleâ€female differences in post translational modifications of mitochondrial proteins. FASEB Journal, 2009, 23, .	0.2	2

#	ARTICLE	IF	CITATIONS
127	Sâ€nitrosylation of cyclophilin D alters mitochondrial permeability transition pore. FASEB Journal, 2011, 25, 1033.1.	0.2	2
128	Degradation of Premature-miR-181b by the Translin/Trax RNase Increases Vascular Smooth Muscle Cell Stiffness. Hypertension, 2021, 78, 831-839.	1.3	2
129	Role of miR-181c in Diet-induced obesity through regulation of lipid synthesis in liver. PLoS ONE, 2021, 16, e0256973.	1.1	2
130	DNA Microarray Gene Profiling: A Tool for the Elucidation of Cardioprotective Genes. , 0, , 99-112.		0
131	What You Eat Affects Your Shape. Circulation Research, 2018, 122, 8-10.	2.0	0
132	A Role for the Phosphatidylinositol-3-Kinase Pathway in Preconditioning. Progress in Experimental Cardiology, 2003, , 275-282.	0.0	0
133	Mechanisms of Erythropoietin-Mediated Cardioprotection during Ischemia-Reperfusion Injury: Role of Protein Kinase C Signaling Blood, 2004, 104, 2907-2907.	0.6	0
134	The Role of Mitochondria in Necrosis Following Myocardial Ischemia-Reperfusion. , 2007, , 291-301.		0
135	Preconditioning increases Sâ€nitrosylation of Lâ€ŧype calcium channel and SERCA2a. FASEB Journal, 2007, 21, A1379.	0.2	Ο
136	Identification of potential Sâ€nitrosylation sites in the myocardium. FASEB Journal, 2011, 25, 1094.4.	0.2	0