Angel Guzman-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11761141/publications.pdf

Version: 2024-02-01

48 papers

3,294 citations

201385 27 h-index 214527 47 g-index

51 all docs

51 docs citations

51 times ranked 3187 citing authors

#	Article	IF	CITATIONS
1	Discovery of 6-Oxo-4-phenyl-hexanoic acid derivatives as RORγt inverse agonists showing favorable ADME profile. Bioorganic and Medicinal Chemistry Letters, 2021, 36, 127786.	1.0	3
2	Discovery of $[1,2,4]$ Triazolo $[1,5-\langle i\rangle a\langle i\rangle]$ pyridine Derivatives as Potent and Orally Bioavailable RORÎ ³ t Inverse Agonists. ACS Medicinal Chemistry Letters, 2020, 11, 528-534.	1.3	15
3	Applications of parallel synthetic lead hopping and pharmacophore-based virtual screening in the discovery of efficient glycine receptor potentiators. European Journal of Medicinal Chemistry, 2017, 137, 63-75.	2.6	11
4	The discovery of benzoxazine sulfonamide inhibitors of Na V 1.7: Tools that bridge efficacy and target engagement. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3477-3485.	1.0	18
5	Sulfonamides as Selective Na _V 1.7 Inhibitors: Optimizing Potency and Pharmacokinetics While Mitigating Metabolic Liabilities. Journal of Medicinal Chemistry, 2017, 60, 5969-5989.	2.9	42
6	Sulfonamides as Selective Na $<$ sub $>$ V $<$ /sub $>$ 1.7 Inhibitors: Optimizing Potency, Pharmacokinetics, and Metabolic Properties to Obtain Atropisomeric Quinolinone (AM-0466) that Affords Robust in Vivo Activity. Journal of Medicinal Chemistry, 2017, 60, 5990-6017.	2.9	56
7	The Discovery and Hit-to-Lead Optimization of Tricyclic Sulfonamides as Potent and Efficacious Potentiators of Glycine Receptors. Journal of Medicinal Chemistry, 2017, 60, 1105-1125.	2.9	32
8	Discovery of a biarylamide series of potent, state-dependent NaV1.7 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3817-3824.	1.0	7
9	Application of a Parallel Synthetic Strategy in the Discovery of Biaryl Acyl Sulfonamides as Efficient and Selective Na _V 1.7 Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 7818-7839.	2.9	37
10	Optimization of a Novel Quinazolinone-Based Series of Transient Receptor Potential A1 (TRPA1) Antagonists Demonstrating Potent in Vivo Activity. Journal of Medicinal Chemistry, 2016, 59, 2794-2809.	2.9	42
11	Identification of a novel conformationally constrained glucagon receptor antagonist. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 839-844.	1.0	18
12	Optimizing glucokinase activator binding kinetics to lower in vivo hypoglycemia risk. MedChemComm, 2014, 5, 802-807.	3.5	9
13	Pyrimidone-based series of glucokinase activators with alternative donor–acceptor motif. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4571-4578.	1.0	19
14	Structure-Based Design of 2-Aminopyridine Oxazolidinones as Potent and Selective Tankyrase Inhibitors. ACS Medicinal Chemistry Letters, 2013, 4, 1218-1223.	1.3	28
15	Defining the key pharmacophore elements of PF-04620110: Discovery of a potent, orally-active, neutral DGAT-1 inhibitor. Bioorganic and Medicinal Chemistry, 2013, 21, 5081-5097.	1.4	15
16	Development of Novel Dual Binders as Potent, Selective, and Orally Bioavailable Tankyrase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 10003-10015.	2.9	38
17	The design and synthesis of a potent glucagon receptor antagonist with favorable physicochemical and pharmacokinetic properties as a candidate for the treatment of type 2 diabetes mellitus. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3051-3058.	1.0	35
18	Discovery of Novel, Induced-Pocket Binding Oxazolidinones as Potent, Selective, and Orally Bioavailable Tankyrase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 4320-4342.	2.9	63

#	Article	IF	CITATIONS
19	Building structure–activity insights through patent mining. Pharmaceutical Patent Analyst, 2012, 1, 545-554.	0.4	0
20	Exploring Aromatic Chemical Space with NEAT: Novel and Electronically Equivalent Aromatic Template. Journal of Chemical Information and Modeling, 2012, 52, 1114-1123.	2.5	16
21	Identification of novel series of pyrazole and indole-urea based DFG-out PYK2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7523-7529.	1.0	13
22	The design and synthesis of indazole and pyrazolopyridine based glucokinase activators for the treatment of Type 2 diabetes mellitus. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7100-7105.	1.0	37
23	Discovery of (<i>S</i>)-6-(3-Cyclopentyl-2-(4-(trifluoromethyl)-1 <i>H</i> -imidazol-1-yl)propanamido)nicotinic Acid as a Hepatoselective Glucokinase Activator Clinical Candidate for Treating Type 2 Diabetes Mellitus. lournal of Medicinal Chemistry, 2012, 55, 1318-1333.	2.9	105
24	Small molecule inhibitors of the Pyk2 and FAK kinases modulate chemoattractant-induced migration, adhesion and Akt activation in follicular and marginal zone B cells. Cellular Immunology, 2012, 275, 47-54.	1.4	24
25	A novel series of glucagon receptor antagonists with reduced molecular weight and lipophilicity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 415-420.	1.0	25
26	Discovery of new piperidine amide triazolobenzodiazepinones as intestinal-selective CCK1 receptor agonists. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2943-2947.	1.0	10
27	Designing glucokinase activators with reduced hypoglycemia risk: discovery of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy)pyrimidine-2-carboxamide as a clinical candidate for the treatment of type 2 diabetes mellitus. MedChemComm, 2011, 2, 828.	3.5	62
28	Discovery of PF-04620110, a Potent, Selective, and Orally Bioavailable Inhibitor of DGAT-1. ACS Medicinal Chemistry Letters, 2011, 2, 407-412.	1.3	86
29	Design and synthesis of potent, orally-active DGAT-1 inhibitors containing a dioxino[2,3-d]pyrimidine core. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6122-6125.	1.0	17
30	Structure–pharmacokinetic relationship of <i>in vivo</i> rat biliary excretion. Biopharmaceutics and Drug Disposition, 2010, 31, 82-90.	1.1	16
31	Discovery Tactics To Mitigate Toxicity Risks Due to Reactive Metabolite Formation with 2-(2-Hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one Derivatives, Potent Calcium-Sensing Receptor Antagonists and Clinical Candidate(s) for the Treatment of Osteoporosis. Chemical Research in Toxicology, 2010, 23, 1115-1126.	1.7	24
32	Sulfoximine-substituted trifluoromethylpyrimidine analogs as inhibitors of proline-rich tyrosine kinase 2 (PYK2) show reduced hERG activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3253-3258.	1.0	67
33	Short-acting 5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one derivatives as orally-active calcium-sensing receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4555-4559.	1.0	23
34	Trifluoromethylpyrimidine-based inhibitors of proline-rich tyrosine kinase 2 (PYK2): Structure–activity relationships and strategies for the elimination of reactive metabolite formation. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6071-6077.	1.0	50
35	Novel syntheses of 3-anilino-pyrazin-2(1H)-ones and 3-anilino-quinoxalin-2-(1H)-ones via microwave-mediated Smiles rearrangement. Tetrahedron Letters, 2008, 49, 1832-1835.	0.7	11
36	Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10619-10624.	3.3	131

#	Article	IF	CITATIONS
37	Zoniporide: A Potent and Selective Inhibitor of the Human Sodiumâ€Hydrogen Exchanger Isoform 1 (NHEâ€1). Cardiovascular Drug Reviews, 2003, 21, 17-32.	4.4	33
38	Discovery of zoniporide: A potent and selective sodiumâ€"hydrogen exchanger type 1 (NHE-1) inhibitor with high aqueous solubility. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 803-807.	1.0	76
39	The Catalytic Enantioselective Construction of Molecules with Quaternary Carbon Stereocenters. Angewandte Chemie - International Edition, 1998, 37, 388-401.	7.2	1,127
40	Der katalytische enantioselektive Aufbau von Molek \tilde{A}^{1} /4len mit quart \tilde{A} r en Kohlenstoff-Stereozentren. , 1998, 110, 402.		1
41	An Enantioselective Synthetic Route to Atractyligenin Using the Oxazaborolidine-Catalyzed Reduction of \hat{l}^2 -Silyl- or \hat{l}^2 -Stannyl-Substituted \hat{l}_{\pm},\hat{l}^2 -Enones as a Key Step. Journal of the American Chemical Society, 1997, 11769-11776.	6.6	70
42	Allylic 4-methoxybenzoates display excellent reagent-controlled double diastereoselection in the sharpless asymmetric dihydroxylation: Application to highly selective total syntheses of polyols. Tetrahedron Letters, 1997, 38, 5941-5944.	0.7	32
43	Highly enantioselective and regioselective catalytic dihydroxylation of homoallylic alcohol derivatives. Tetrahedron Letters, 1995, 36, 3481-3484.	0.7	35
44	Catalytic enantioselective synthesis of (14R)-14-hydroxy-4,14-retro-retinol from retinyl acetate. Tetrahedron Letters, 1995, 36, 4171-4174.	0.7	11
45	Kinetic Resolution by Enantioselective Dihydroxylation of Secondary Allylic 4-Methoxybenzoate Esters Using a Mechanistically Designed Cinchona Alkaloid Catalyst. Journal of the American Chemical Society, 1995, 117, 10817-10824.	6.6	62
46	The application of a mechanistic model leads to the extension of the Sharpless asymmetric dihydroxylation to allylic 4-methoxybenzoates and conformationally related amine and homoallylic alcohol derivatives Journal of the American Chemical Society, 1995, 117, 10805-10816.	6.6	128
47	Demonstration of the Synthetic Power of Oxazaborolidine-Catalyzed Enantioselective Diels-Alder Reactions by Very Efficient Routes to Cassiol and Gibberellic Acid. Journal of the American Chemical Society, 1994, 116, 3611-3612.	6.6	101
48	Short Enantioselective Synthesis of (-)-Ovalicin, a Potent Inhibitor of Angiogenesis, Using Substrate-Enhanced Catalytic Asymmetric Dihydroxylation. Journal of the American Chemical Society, 1994, 116, 12109-12110.	6.6	89