
Satoru Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1176010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program. Current Biology, 2016, 26, 2862-2872.	3.9	149
2	ldentification of Substrain-Specific Mutations by Massively Parallel Whole-Genome Resequencing of Synechocystis sp. PCC 6803. DNA Research, 2012, 19, 67-79.	3.4	119
3	CyanoBase:Âa large-scale update on its 20th anniversary. Nucleic Acids Research, 2017, 45, D551-D554.	14.5	95
4	Lightâ€dependent and asynchronous replication of cyanobacterial multi opy chromosomes. Molecular Microbiology, 2012, 83, 856-865.	2.5	68
5	Defect in the Formation of 70S Ribosomes Caused by Lack of Ribosomal Protein L34 Can Be Suppressed by Magnesium. Journal of Bacteriology, 2014, 196, 3820-3830.	2.2	64
6	The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24900-24906.	7.1	48
7	Intensive DNA Replication and Metabolism during the Lag Phase in Cyanobacteria. PLoS ONE, 2015, 10, e0136800.	2.5	44
8	Diversification of DnaA dependency for DNA replication in cyanobacterial evolution. ISME Journal, 2016, 10, 1113-1121.	9.8	39
9	mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. Nature Plants, 2020, 6, 1179-1191.	9.3	39
10	Coordination of Polyploid Chromosome Replication with Cell Size and Growth in a Cyanobacterium. MBio, 2019, 10, .	4.1	37
11	Studies on the role of HtpG in the tetrapyrrole biosynthesis pathway of the cyanobacterium Synechococcus elongatus PCC 7942. Biochemical and Biophysical Research Communications, 2007, 352, 36-41.	2.1	35
12	Cytosine N4-Methylation via M.Ssp6803II Is Involved in the Regulation of Transcription, Fine- Tuning of DNA Replication and DNA Repair in the Cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2019, 10, 1233.	3.5	31
13	Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803. ELife, 2021, 10, .	6.0	29
14	Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae. Biochemical and Biophysical Research Communications, 2013, 439, 264-269.	2.1	26
15	Cyanobacterial multi-copy chromosomes and their replication. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1309-1321.	1.3	26
16	Construction of a <i>URA5.3</i> deletion strain of the unicellular red alga <i>Cyanidioschyzon merolae</i> : A backgroundless host strain for transformation experiments. Journal of General and Applied Microbiology, 2015, 61, 211-214.	0.7	26
17	Protection ofpsbAllTranscript from Ribonuclease Degradationin Vitroby DnaK2 and DnaJ2 Chaperones of the CyanobacteriumSynechococcus elongatusPCC 7942. Bioscience, Biotechnology and Biochemistry, 2007, 71, 279-282.	1.3	23
18	Complete Genome Sequence of Enterococcus mundtii QU 25, an Efficient L-(+)-Lactic Acid-Producing Bacterium. DNA Research, 2014, 21, 369-377.	3.4	22

SATORU WATANABE

#	Article	IF	CITATIONS
19	Mitochondrial Localization of Ferrochelatase in a Red Alga Cyanidioschyzon merolae. Plant and Cell Physiology, 2013, 54, 1289-1295.	3.1	21
20	Complete Sequence of the First Chimera Genome Constructed by Cloning the Whole Genome of Synechocystis Strain PCC6803 into the Bacillus subtilis 168 Genome. Journal of Bacteriology, 2012, 194, 7007-7007.	2.2	18
21	Conserved twoâ€component <scp>H</scp> ik34â€ <scp>R</scp> re1 module directly activates heatâ€stress inducible transcription of major chaperone and other genes in <scp><i>S</i></scp> <i>ynechococcus elongatus</i> <scp>PCC</scp> 7942. Molecular Microbiology, 2017, 104, 260-277.	2.5	17
22	Essentiality of WalRK for growth in Bacillus subtilis and its role during heat stress. Microbiology (United Kingdom), 2018, 164, 670-684.	1.8	14
23	Visualization of the seasonal shift of a variety of airborne pollens in western Tokyo. Science of the Total Environment, 2021, 788, 147623.	8.0	13
24	Draft Genome Sequence of the Nitrogen-Fixing and Hormogonia-Inducing Cyanobacterium <i>Nostoc cycadae</i> Strain WK-1, Isolated from the Coralloid Roots of <i>Cycas revoluta</i> . Genome Announcements, 2018, 6, .	0.8	10
25	Stable expression of a GFP-reporter gene in the red alga Cyanidioschyzon merolae. Bioscience, Biotechnology and Biochemistry, 2014, 78, 175-177.	1.3	9
26	Proteomic analysis of haem-binding protein from <i>Arabidopsis thaliana</i> and <i>Cyanidioschyzon merolae</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190488.	4.0	9
27	Variety of DNA Replication Activity Among Cyanobacteria Correlates with Distinct Respiration Activity in the Dark. Plant and Cell Physiology, 2016, 58, pcw186.	3.1	8
28	Identification of Transcription Factors and the Regulatory Genes Involved in Triacylglycerol Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae. Plants, 2021, 10, 971.	3.5	8
29	Carbon-free production of 2-deoxy-scyllo-inosose (DOI) in cyanobacterium Synechococcus elongatus PCC 7942. Bioscience, Biotechnology and Biochemistry, 2018, 82, 161-165.	1.3	6
30	The CRPâ€family transcriptional regulator DevH regulates expression of heterocystâ€specific genes at the later stage of differentiation in the cyanobacterium <i>Anabaena</i> sp. strain PCC 7120. Molecular Microbiology, 2020, 114, 553-562.	2.5	6
31	Evolution of Ribosomal Protein S14 Demonstrated by the Reconstruction of Chimeric Ribosomes in Bacillus subtilis. Journal of Bacteriology, 2021, 203, .	2.2	6
32	ParA-like protein influences the distribution of multi-copy chromosomes in cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (United Kingdom), 2018, 164, 45-56.	1.8	6
33	Biochemical and molecular characterization of orange- and tangerine-colored rice calli. Plant Biotechnology, 2015, 32, 193-203.	1.0	6
34	Acclimation process of the chlorophyll <i>d</i> -bearing cyanobacterium <i>Acaryochloris marina</i> to an orange light environment revealed by transcriptomic analysis and electron microscopic observation. Journal of General and Applied Microbiology, 2020, 66, 106-115.	0.7	5
35	Novel (p)ppGpp0suppressor mutations reveal an unexpected link between methionine catabolism and GTP synthesis inBacillus subtilis. Molecular Microbiology, 2020, 113, 1155-1169.	2.5	5
36	The nitrogen-regulated response regulator NrrA is a conserved regulator of glycogen catabolism in β-cyanobacteria. Microbiology (United Kingdom), 2017, 163, 1711-1719.	1.8	5

SATORU WATANABE

#	Article	IF	CITATIONS
37	Transcriptional regulation of xylose utilization in Enterococcus mundtii QU 25. RSC Advances, 2015, 5, 93283-93292.	3.6	4
38	A Carbon Dioxide Limitation-Inducible Protein, ColA, Supports the Growth of Synechococcus sp. PCC 7002. Marine Drugs, 2017, 15, 390.	4.6	4
39	Conserved Two-component Hik2–Rre1 Signaling Is Activated Under Temperature Upshift and Plastoquinone-reducing Conditions in the Cyanobacterium <i>Synechococcus elongatus</i> PCC 7942. Plant and Cell Physiology, 2022, 63, 176-188.	3.1	4
40	Transposition of insertion sequence IS <i>256Bsu1</i> in <i>Bacillus subtilis</i> 168 is strictly dependent on <i>recA</i> . Genes and Genetic Systems, 2017, 92, 59-71.	0.7	3
41	Stable mutants of restriction-deficient/modification-proficient Bacillus subtilis 168: hub strains for giant DNA engineering. Journal of Biochemistry, 2019, 166, 231-236.	1.7	2
42	Regulation of the <i>groESL1</i> transcription by the HrcA repressor and a novel transcription factor Orf7.5 in the cyanobacterium <i>Synechococcus elongatus</i> PCC7942. Journal of General and Applied Microbiology, 2020, 66, 85-92.	0.7	2
43	Novel heat shock response mechanism mediated by the initiation nucleotide of transcription. Journal of General and Applied Microbiology, 2022, 68, 95-108.	0.7	2
44	Constitutive expression of phosphoketolase, a key enzyme for metabolic shift from homo- to heterolactic fermentation in <i>Enterococcus mundtii</i> QU 25. Bioscience of Microbiota, Food and Health, 2019, 38, 111-114.	1.8	1
45	Specific binding of DnaA to the DnaA box motif in the cyanobacterium <i>Synechococcus elongatus</i> PCC 7942. Journal of General and Applied Microbiology, 2020, 66, 80-84.	0.7	1
46	3P-272 Interaction of HtpG (Hsp90) with the DnaK (Hsp70) chaperone system in the cyanobacterium Synechococcus sp. PCC 7942(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S169.	0.1	0
47	Complete Genome Sequence of Enterococcus faecium QU50, a Thermophilic Lactic Acid Bacterium Capable of Metabolizing Xylose. Microbiology Resource Announcements, 2019, 8, .	0.6	Ο
48	EliA is required for inducing the stearyl alcohol-mediated expression of secretory proteins and production of polyester in Ralstonia sp. NT80. Microbiology (United Kingdom), 2016, 162, 408-419.	1.8	0
49	Direct Visualization of the Multicopy Chromosomes in Cyanobacterium Synechococcus elongatus PCC 7942. Bio-protocol, 2018, 8, e2958.	0.4	Ο