Lawrence J Whalley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11759897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cognitive Test Scores and Progressive Cognitive Decline in the Aberdeen 1921 and 1936 Birth Cohorts. Brain Sciences, 2022, 12, 318.	1.1	1
2	Cognitive Screening in Aging Physicians. Neurology: Clinical Practice, 2021, 11, 89-90.	0.8	0
3	Aspirin moderates the association between cardiovascular risk, brain white matter hyperintensity total lesion volume and processing speed in normal ageing. Maturitas, 2020, 133, 49-53.	1.0	4
4	Increased diastolic blood pressure is associated with MRI biomarkers of dementia-related brain pathology in normative ageing. Age and Ageing, 2018, 47, 95-100.	0.7	26
5	A comparison of measurement methods of hippocampal atrophy rate for predicting Alzheimer's dementia in the Aberdeen Birth Cohort of 1936. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 6, 31-39.	1.2	12
6	Klotho, APOEε4, cognitive ability, brain size, atrophy, and survival: a study in the Aberdeen Birth Cohort of 1936. Neurobiology of Aging, 2017, 55, 91-98.	1.5	22
7	Late-life deficits in cognitive, physical and emotional functions, childhood intelligence and occupational profile: a life-course examination of the Aberdeen 1936 Birth Cohort (ABC1936). Age and Ageing, 2016, 45, 486-493.	0.7	10
8	Are gender-specific approaches required to prevent dementia?. Maturitas, 2016, 92, 7-8.	1.0	0
9	Cerebral correlates of cognitive reserve. Psychiatry Research - Neuroimaging, 2016, 247, 65-70.	0.9	26
10	Polygenic Risk for Alzheimer's Disease is not Associated with Cognitive Ability or Cognitive Aging in Non-Demented Older People. Journal of Alzheimer's Disease, 2014, 39, 565-574.	1.2	63
11	Homocysteine, antioxidant micronutrients and late onset dementia. European Journal of Nutrition, 2014, 53, 277-285.	1.8	20
12	Functional Gene Group Analysis Indicates No Role for Heterotrimeric G Proteins in Cognitive Ability. PLoS ONE, 2014, 9, e91690.	1.1	3
13	Genetic and environmental factors in late onset dementia: possible role for early parental death. International Journal of Geriatric Psychiatry, 2013, 28, 75-81.	1.3	16
14	DEPRESSIVE SYMPTOMS IN LATE LIFE AND CEREBROVASCULAR DISEASE: THE IMPORTANCE OF INTELLIGENCE AND LESION LOCATION. Depression and Anxiety, 2013, 30, 77-84.	2.0	12
15	Human culture and the future dementia epidemic. Neurology, 2013, 80, 1824-1825.	1.5	7
16	Evolutionary conserved longevity genes and human cognitive abilities in elderly cohorts. European Journal of Human Genetics, 2012, 20, 341-347.	1.4	24
17	Anticholinergic Drugs in Late Life: Adverse Effects on Cognition but not on Progress to Dementia. Journal of Alzheimer's Disease, 2012, 30, 253-261.	1.2	50
18	Brain structural complexity and life course cognitive change. NeuroImage, 2012, 61, 694-701.	2.1	50

#	Article	IF	CITATIONS
19	Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 2012, 482, 212-215.	13.7	228
20	Spatial Distribution and Secular Trends in the Epidemiology of Alzheimer's Disease. Neuroimaging Clinics of North America, 2012, 22, 1-10.	0.5	15
21	Childhood socioeconomic status and adult brain size: Childhood socioeconomic status influences adult hippocampal size. Annals of Neurology, 2012, 71, 653-660.	2.8	144
22	Brain lesions, hypertension and cognitive ageing in the 1921 and 1936 Aberdeen birth cohorts. Age, 2012, 34, 451-459.	3.0	27
23	Cognitive Function in Childhood and Lifetime Cognitive Change in Relation to Mental Wellbeing in Four Cohorts of Older People. PLoS ONE, 2012, 7, e44860.	1.1	45
24	How the 1932 and 1947 mental surveys of Aberdeen schoolchildren provide a framework to explore the childhood origins of late onset disease and disability. Maturitas, 2011, 69, 365-372.	1.0	42
25	Childhood Socioeconomic Position and Objectively Measured Physical Capability Levels in Adulthood: A Systematic Review and Meta-Analysis. PLoS ONE, 2011, 6, e15564.	1.1	121
26	Inter-individual Differences in fMRI Entropy Measurements in Old Age. IEEE Transactions on Biomedical Engineering, 2011, 58, 3206-3214.	2.5	44
27	The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases. Brain, 2011, 134, 3687-3696.	3.7	107
28	How useful are the SF-36 sub-scales in older people? Mokken scaling of data from the HALCyon programme. Quality of Life Research, 2011, 20, 1005-1010.	1.5	24
29	Brain Volume and Survival from Age 78 to 85: The Contribution of Alzheimerâ€Type Magnetic Resonance Imaging Findings. Journal of the American Geriatrics Society, 2010, 58, 688-695.	1.3	19
30	Human Intelligence and Polymorphisms in the DNA Methyltransferase Genes Involved in Epigenetic Marking. PLoS ONE, 2010, 5, e11329.	1.1	31
31	Solvent exposure and cognitive ability at age 67: a follow-up study of the 1947 Scottish Mental Survey. Occupational and Environmental Medicine, 2010, 67, 401-407.	1.3	8
32	Associations between childhood intelligence (IQ), adult morbidity and mortality. Maturitas, 2010, 65, 98-105.	1.0	29
33	Exploring possible neural mechanisms of intelligence differences using processing speed and working memory tasks: An fMRI study. Intelligence, 2009, 37, 199-206.	1.6	23
34	Genetic determinants of ageing processes and diseases in later life. Maturitas, 2009, 62, 225-229.	1.0	22
35	Association of KIBRA and memory. Neuroscience Letters, 2009, 458, 140-143.	1.0	66
36	Quality of life and its correlates in octogenarians. Use of the SEIQoL-DW in Wave 5 of the Aberdeen Birth Cohort 1921 Study (ABC1921), Quality of Life Research, 2008, 17, 11-20	1.5	23

#	Article	IF	CITATIONS
37	Predictors and correlates of edentulism in the healthy old people in Edinburgh (HOPE) study. Gerodontology, 2008, 25, 199-204.	0.8	43
38	Testing replication of a 5-SNP set for general cognitive ability in six population samples. European Journal of Human Genetics, 2008, 16, 1388-1395.	1.4	8
39	All-cause mortality in the Aberdeen 1921 birth cohort: Effects of socio-demographic, physical and cognitive factors. BMC Public Health, 2008, 8, 307.	1.2	6
40	PPARG Pro12Ala genotype and risk of cognitive decline in elders? Maybe with diabetes. Neuroscience Letters, 2008, 434, 50-55.	1.0	19
41	Is retaining the youthful functional anatomy underlying speed of information processing a signature of successful cognitive ageing? An event-related fMRI study of inspection time performance. NeuroImage, 2008, 41, 581-595.	2.1	41
42	n–3 Fatty acid erythrocyte membrane content, APOE ε4, and cognitive variation: an observational follow-up study in late adulthood. American Journal of Clinical Nutrition, 2008, 87, 449-454.	2.2	164
43	The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence. Human Molecular Genetics, 2007, 16, 600-608.	1.4	93
44	Aspirin and cognitive function. BMJ: British Medical Journal, 2007, 334, 961-962.	2.4	2
45	Blood Pressure and Cognition in the Aberdeen 1936 Birth Cohort. Gerontology, 2007, 53, 432-437.	1.4	4
46	Predictors of tooth loss in the 1921 Lothian Birth Cohort. Age and Ageing, 2007, 37, 111-114.	0.7	7
47	Smoking and cognitive change from age 11 to 66years: A confirmatory investigation. Addictive Behaviors, 2007, 32, 63-68.	1.7	58
48	No association of CETP genotype with cognitive function or age-related cognitive change. Neuroscience Letters, 2007, 420, 189-192.	1.0	12
49	COMT genotype and cognitive ability: A longitudinal aging study. Neuroscience Letters, 2007, 421, 57-61.	1.0	65
50	Genetic enhancement of cognition in a kindred with cone-rod dystrophy due to RIMS1 mutation. Journal of Medical Genetics, 2007, 44, 373-380.	1.5	29
51	The Association between Retinal Vascular Network Geometry and Cognitive Ability in an Elderly Population. , 2007, 48, 1995.		70
52	Social Support and Successful Aging. Journal of Individual Differences, 2007, 28, 103-115.	0.5	164
53	A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition. BMC Genetics, 2007, 8, 43.	2.7	69
54	The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatrics, 2007, 7, 28.	1.1	399

#	Article	IF	CITATIONS
55	Does childhood intelligence predict variation in cognitive change in later life?. Personality and Individual Differences, 2007, 42, 1551-1559.	1.6	32
56	Social support in later life: Examining the roles of childhood and adulthood cognition. Personality and Individual Differences, 2007, 43, 937-948.	1.6	10
57	Generality and specificity in cognitive aging: A volumetric brain analysis. NeuroImage, 2006, 30, 1433-1440.	2.1	43
58	Polymorphisms in the gene encoding 11B-hydroxysteroid dehydrogenase type 1 (HSD11B1) and lifetime cognitive change. Neuroscience Letters, 2006, 393, 74-77.	1.0	14
59	The association between telomere length, physical health, cognitive ageing, and mortality in non-demented older people. Neuroscience Letters, 2006, 406, 260-264.	1.0	172
60	A life-course approach to the aetiology of late-onset dementias. Lancet Neurology, The, 2006, 5, 87-96.	4.9	278
61	Physical fitness and lifetime cognitive change. Neurology, 2006, 67, 1195-1200.	1.5	102
62	Commentary: Childhood education and disparities in adult health—the need for improved theories and better data. International Journal of Epidemiology, 2006, 35, 466-467.	0.9	6
63	The Cognitive Cost of Being a Twin: Two Whole-Population Surveys. Twin Research and Human Genetics, 2005, 8, 376-383.	0.3	37
64	Childhood IQ and social factors on smoking behaviour, lung function and smoking-related outcomes in adulthood: Linking the Scottish Mental Survey 1932 and the Midspan studies. British Journal of Health Psychology, 2005, 10, 399-410.	1.9	21
65	Large, Consistent Estimates of the Heritability of Cognitive Ability in Two Entire Populations of 11-Year-Old Twins from Scottish Mental Surveys of 1932 and 1947. Behavior Genetics, 2005, 35, 525-534.	1.4	37
66	Brain White Matter Hyperintensities: Relative Importance of Vascular Risk Factors in Nondemented Elderly People. Radiology, 2005, 237, 251-257.	3.6	184
67	Nicastrin gene polymorphisms, cognitive ability level and cognitive ageing. Neuroscience Letters, 2005, 373, 110-114.	1.0	24
68	KLOTHO genotype and cognitive ability in childhood and old age in the same individuals. Neuroscience Letters, 2005, 378, 22-27.	1.0	81
69	The functional COMT polymorphism, Val158Met, is associated with logical memory and the personality trait intellect/imagination in a cohort of healthy 79 year olds. Neuroscience Letters, 2005, 385, 1-6.	1.0	81
70	Genetic influences on oxidative stress and their association with normal cognitive ageing. Neuroscience Letters, 2005, 386, 116-120.	1.0	42
71	Childhood IQ, smoking, and cognitive change from age 11 to 64 years. Addictive Behaviors, 2005, 30, 77-88.	1.7	52
72	RE: "RELATION OF EDUCATION AND OCCUPATION-BASED SOCIOECONOMIC STATUS TO INCIDENT ALZHEIMER'S DISEASE". American Journal of Epidemiology, 2004, 160, 404-405.	1.6	2

#	Article	IF	CITATIONS
73	Diet and dementia. The Journal of the British Menopause Society, 2004, 10, 113-117.	1.3	15
74	What provides cerebral reserve?. Brain, 2004, 127, 1191-1199.	3.7	217
75	Searching for genetic influences on normal cognitive ageing. Trends in Cognitive Sciences, 2004, 8, 178-184.	4.0	69
76	Age at natural menopause and cognition. Maturitas, 2004, 49, 148-156.	1.0	31
77	Cognitive reserve and the neurobiology of cognitive aging. Ageing Research Reviews, 2004, 3, 369-382.	5.0	372
78	Cognitive aging, childhood intelligence, and the use of food supplements: possible involvement of nâ^'3 fatty acids. American Journal of Clinical Nutrition, 2004, 80, 1650-1657.	2.2	104
79	Childhood mental ability and blood pressure at midlife. Journal of Hypertension, 2004, 22, 893-897.	0.3	90
80	The Impact of Childhood Intelligence on Later Life: Following Up the Scottish Mental Surveys of 1932 and 1947 Journal of Personality and Social Psychology, 2004, 86, 130-147.	2.6	693
81	Apolipoprotein E Gene Variability and Cognitive Functions at Age 79: A Follow-Up of the Scottish Mental Survey of 1932 Psychology and Aging, 2004, 19, 367-371.	1.4	70
82	The influence of the ε4 allele of the apolipoprotein E gene on childhood IQ, nonverbal reasoning in old age, and lifetime cognitive change. Intelligence, 2003, 31, 85-92.	1.6	33
83	Lack of association between polymorphisms in angiotensin-converting-enzyme and methylenetetrahydrofolate reductase genes and normal cognitive ageing in humans. Neuroscience Letters, 2003, 347, 175-178.	1.0	34
84	Childhood IQ, Social Class, Deprivation, and Their Relationships with Mortality and Morbidity Risk in Later Life: Prospective Observational Study Linking the Scottish Mental Survey 1932 and the Midspan Studies. Psychosomatic Medicine, 2003, 65, 877-883.	1.3	193
85	Cerebral white matter abnormalities and lifetime cognitive change: A 67-year follow-up of the Scottish Mental Survey of 1932 Psychology and Aging, 2003, 18, 140-148.	1.4	83
86	Homocysteine, B vitamin status, and cognitive function in the elderly. American Journal of Clinical Nutrition, 2002, 75, 908-913.	2.2	231
87	Brain ageing and dementia: what makes the difference?. British Journal of Psychiatry, 2002, 181, 369-371.	1.7	21
88	Cognitive change and the APOE ɛ4 allele. Nature, 2002, 418, 932-932.	13.7	267
89	Longitudinal cohort study of childhood IQ and survival up to age 76. BMJ: British Medical Journal, 2001, 322, 819-819.	2.4	405
90	Early-onset Alzheimer's disease in Scotland: environmental and familial factors. British Journal of Psychiatry, 2001, 178, s53-s59.	1.7	21

#	Article	IF	CITATIONS
91	Neuropsychologic Correlates of Brain White Matter Lesions Depicted on MR Images: 1921 Aberdeen Birth Cohort. Radiology, 2001, 221, 51-55.	3.6	74
92	The Stability of Individual Differences in Mental Ability from Childhood to Old Age: Follow-up of the 1932 Scottish Mental Survey. Intelligence, 2000, 28, 49-55.	1.6	411
93	Lipids and schizophrenia. British Journal of Psychiatry, 1999, 174, 101-104.	1.7	21
94	Epidemiology of Presenile Alzheimer's Disease in Scotland (1974–88). British Journal of Psychiatry, 1995, 167, 732-738.	1.7	28
95	Epidemiology of Presenile Alzheimer's Disease in Scotland (1974–88). British Journal of Psychiatry, 1995, 167, 728-731.	1.7	26
96	Persistence of the Decline in the Diagnosis of Schizophrenia Among First Admissions to Scottish Hospitals from 1969 to 1988. British Journal of Psychiatry, 1993, 163, 620-626.	1.7	61
97	The quantification of the relative effects of age and NART-predicted IQ on cognitive function in healthy old people. International Journal of Geriatric Psychiatry, 1992, 7, 153-157.	1.3	34
98	The release of oxytocin, vasopressin and associated neurophysins after electroconvulsive therapy. Human Psychopharmacology, 1991, 6, 161-164.	0.7	5
99	A Neuroendocrine View of ECT. British Journal of Psychiatry, 1990, 157, 740-743.	1.7	7
100	Selective effects of ECT on hypothalamic—pituitary activity. Psychological Medicine, 1987, 17, 319-328.	2.7	52
101	Raised Plasma Cortisol Concentrations a Feature of Drug-Free Psychotics and not Specific for Depression. British Journal of Psychiatry, 1986, 148, 58-65.	1.7	77
102	Mortality of a Lithium-Treated Population. British Journal of Psychiatry, 1984, 145, 277-282.	1.7	107