
## Sameer Mirza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11758946/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ecdysoneless Protein Regulates Viral and Cellular mRNA Splicing to Promote Cervical Oncogenesis.<br>Molecular Cancer Research, 2022, 20, 305-318.                                                                                | 3.4 | 6         |
| 2  | The Mammalian Ecdysoneless Protein Interacts with RNA Helicase DDX39A To Regulate Nuclear mRNA<br>Export. Molecular and Cellular Biology, 2021, 41, e0010321.                                                                    | 2.3 | 6         |
| 3  | Blocking c-MET/ERBB1 Axis Prevents Brain Metastasis in ERBB2+ Breast Cancer. Cancers, 2020, 12, 2838.                                                                                                                            | 3.7 | 5         |
| 4  | Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts.<br>Molecular Therapy - Nucleic Acids, 2020, 19, 1379-1398.                                                                    | 5.1 | 30        |
| 5  | Loss of the Nuclear Pool of Ubiquitin Ligase CHIP/STUB1 in Breast Cancer Unleashes the MZF1-Cathepsin Pro-oncogenic Program. Cancer Research, 2018, 78, 2524-2535.                                                               | 0.9 | 35        |
| 6  | 3D hydrogel breast cancer models for studying the effects of hypoxia on epithelial to mesenchymal transition. Oncotarget, 2018, 9, 32191-32203.                                                                                  | 1.8 | 43        |
| 7  | 3D Bioprinting of Breast Cancer Models for Drug Resistance Study. ACS Biomaterials Science and Engineering, 2018, 4, 4401-4411.                                                                                                  | 5.2 | 104       |
| 8  | Epidermal Growth Factor Receptor activation promotes ADA3 acetylation through the AKT-p300 pathway. Cell Cycle, 2017, 16, 1515-1525.                                                                                             | 2.6 | 15        |
| 9  | Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein<br>Response. Molecular and Cellular Biology, 2017, 37, .                                                                             | 2.3 | 7         |
| 10 | Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell<br>Proliferation. Molecular and Cellular Biology, 2016, 36, 2487-2502.                                                        | 2.3 | 13        |
| 11 | Clinicopathological and prognostic significance of mitogen-activated protein kinases (MAPK) in breast cancers. Breast Cancer Research and Treatment, 2016, 159, 457-467.                                                         | 2.5 | 22        |
| 12 | ADA3 regulates normal and tumor mammary epithelial cell proliferation through c-MYC. Breast<br>Cancer Research, 2016, 18, 113.                                                                                                   | 5.0 | 10        |
| 13 | A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required<br>for the Functional Role of ECD in Cell Cycle Progression. Molecular and Cellular Biology, 2016, 36,<br>886-899.              | 2.3 | 19        |
| 14 | Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE, 2016, 11, e0167064.                                                                                                                                          | 2.5 | 5         |
| 15 | The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle, 2015, 14, 990-1000.                                                               | 2.6 | 9         |
| 16 | The mammalian target of rapamycin complex 1 (mTORC1) in breast cancer: the impact of oestrogen receptor and HER2 pathways. Breast Cancer Research and Treatment, 2015, 150, 91-103.                                              | 2.5 | 10        |
| 17 | Alteration/Deficiency in Activation 3 (ADA3) Protein, a Cell Cycle Regulator, Associates with the<br>Centromere through CENP-B and Regulates Chromosome Segregation. Journal of Biological<br>Chemistry, 2015, 290, 28299-28310. | 3.4 | 10        |
| 18 | Cytoplasmic localization of alteration/deficiency in activation 3 (ADA3) predicts poor clinical outcome in breast cancer patients. Breast Cancer Research and Treatment, 2013, 137, 721-731.                                     | 2.5 | 15        |

SAMEER MIRZA

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Expression of DNA Methyltransferases in Breast Cancer Patients and to Analyze the Effect of Natural<br>Compounds on DNA Methyltransferases and Associated Proteins. Journal of Breast Cancer, 2013, 16, 23.                 | 1.9 | 186       |
| 20 | Abstract B120: Ada3, a component of ATAC complex is involved in regulation of the Genomic stability, DNA repair process and breast cancer. , 2013, , .                                                                      |     | 0         |
| 21 | Mammalian Alteration/Deficiency in Activation 3 (Ada3) Is Essential for Embryonic Development and<br>Cell Cycle Progression. Journal of Biological Chemistry, 2012, 287, 29442-29456.                                       | 3.4 | 27        |
| 22 | Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability. Cell<br>Cycle, 2012, 11, 4266-4274.                                                                                    | 2.6 | 28        |
| 23 | DNA methylation of circulating DNA: a marker for monitoring efficacy of neoadjuvant chemotherapy<br>in breast cancer patients. Tumor Biology, 2012, 33, 1837-1843.                                                          | 1.8 | 42        |
| 24 | Clinical Significance of Promoter Hypermethylation of ERβ and RARβ2 in Tumor and Serum DNA in Indian<br>Breast Cancer Patients. Annals of Surgical Oncology, 2012, 19, 3107-3115.                                           | 1.5 | 29        |
| 25 | Overexpression of a novel cell cycle regulator ecdysoneless in breast cancer: a marker of poor<br>prognosis in HER2/neu-overexpressing breast cancer patients. Breast Cancer Research and Treatment,<br>2012, 134, 171-180. | 2.5 | 21        |
| 26 | Clinical significance of Maspin promoter methylation and loss of its protein expression in invasive<br>ductal breast carcinoma: correlation with VEGF-A and MTA1 expression. Tumor Biology, 2011, 32, 23-32.                | 1.8 | 33        |
| 27 | Mouse models of estrogen receptor-positive breast cancer. Journal of Carcinogenesis, 2011, 10, 35.                                                                                                                          | 2.5 | 31        |
| 28 | Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer<br>agents. Molecular and Cellular Biochemistry, 2010, 342, 101-109.                                                  | 3.1 | 55        |
| 29 | CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients.<br>Clinical Biochemistry, 2010, 43, 373-379.                                                                              | 1.9 | 59        |
| 30 | Clinical significance of Stratifin, ERα and PR promoter methylation in tumor and serum DNA in Indian<br>breast cancer patients. Clinical Biochemistry, 2010, 43, 380-386.                                                   | 1.9 | 38        |
| 31 | Clinical significance of promoter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients. Life Sciences, 2010, 87, 83-91.                                                 | 4.3 | 79        |
| 32 | Prognostic Relevance of Promoter Hypermethylation of Multiple Genes in Breast Cancer Patients.<br>Analytical Cellular Pathology, 2009, 31, 487-500.                                                                         | 1.4 | 4         |
| 33 | Prognostic relevance of promoter hypermethylation of multiple genes in breast cancer patients.<br>Cellular Oncology, 2009, 31, 487-500.                                                                                     | 1.9 | 34        |
| 34 | Epigenetic alterations of CDH1 and APC genes: Relationship with activation of Wnt/β-catenin Pathway in invasive ductal carcinoma of breast. Life Sciences, 2008, 83, 318-325.                                               | 4.3 | 86        |
| 35 | Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sciences, 2007, 80, 1873-1881.                                                                   | 4.3 | 90        |
| 36 | Promoter hypermethylation of TMS1, BRCA1, ERα and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sciences, 2007, 81, 280-287.                                                                | 4.3 | 101       |

| #  | Article                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Detection of RASSF1A and RAR? Hypermethylation in Serum DNA from Breast Cancer Patients.<br>Epigenetics, 2006, 1, 88-93. | 2.7 | 65        |