Feizollah Shahbazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Starch-Polyvinyl Alcohol-Based Films Reinforced with Chitosan Nanoparticles: Physical, Mechanical, Structural, Thermal and Antimicrobial Properties. Applied Sciences (Switzerland), 2022, 12, 1111.	1.3	24
2	Simulated transit vibration effects on the postharvest quality of persimmon during storage. Postharvest Biology and Technology, 2022, 189, 111918.	2.9	12
3	Crop Yield and Physicochemical Properties of Wheat Grains as Affected by Tillage Systems. Sustainability, 2021, 13, 4781.	1.6	8
4	Effects of Moisture Contents on Harvesting time and Drying Methods on Mechanical Properties and Electrical Conductivity of Corn Hybrids. Nutrition and Food Sciences Research, 2020, 7, 33-40.	0.3	2
5	Influences of phosphorus and foliar iron fertilization rate on the quality parameters of whole wheat grain. Food Science and Nutrition, 2019, 7, 442-448.	1.5	7
6	A nondestructive intelligent approach to realâ€ŧime evaluation of chicken meat freshness based on computer vision technique. Journal of Food Process Engineering, 2019, 42, e13039.	1.5	20
7	A novel stochastic energy analysis of a solar air heater: case study in solar radiation uncertainty. Energy Systems, 2019, 10, 141-161.	1.8	1
8	Effects of simulated in-transit vibration on the vase life and post-harvest characteristics of cut rose flowers. Horticulture Environment and Biotechnology, 2017, 58, 38-47.	0.7	11
9	Mechanical damage to green and red lentil seeds. Food Science and Nutrition, 2017, 5, 943-947.	1.5	19
10	Aerodynamic properties of lentil seeds. International Agrophysics, 2015, 29, 391-396.	0.7	3
11	Mechanical damage to wheat seeds as affected by phosphorus and iron fertilisation rate. Quality Assurance and Safety of Crops and Foods, 2015, 7, 385-391.	1.8	6
12	Evaluation and modeling of aerodynamic properties of mung bean seeds. International Agrophysics, 2015, 29, 121-126.	0.7	7
13	Influence of Foliar Iron Fertilization Rate on the Breakage Susceptibility of Wheat Seeds. Journal of Plant Nutrition, 2015, 38, 2204-2216.	0.9	11
14	Aerodynamic Properties of Makhobeli, Triticale and Wheat Seeds. International Agrophysics, 2014, 28, 389-394.	0.7	14
15	Evaluation and modelling the mechanical damage to cowpea seeds under impact loading. Quality Assurance and Safety of Crops and Foods, 2014, 6, 453-458.	1.8	9
16	Mass modelling of plum (Prunus domestica L.) fruit with some physical characteristics. Quality Assurance and Safety of Crops and Foods, 2014, 6, 215-219.	1.8	5
17	Aerodynamic properties of wild mustard (<i>Sinapis arvensis</i> L.) seed for separation from canola. Journal of the Science of Food and Agriculture, 2013, 93, 1466-1470.	1.7	9
18	Mass modeling of fig (<i><scp>F</scp>icus carica </i> <scp>L</scp> .) fruit with some physical characteristics. Food Science and Nutrition, 2013, 1, 125-129.	1.5	16

Feizollah Shahbazi

#	Article	IF	CITATIONS
19	Effects of Moisture Content and Impact Energy on the Cracking Characteristics of Walnuts. International Journal of Food Engineering, 2013, 10, 149-156.	0.7	11
20	Effective conditions for extracting higher quality kernels from walnuts. Quality Assurance and Safety of Crops and Foods, 2013, 5, 199-206.	1.8	4
21	Correlating the Data on the Mechanical Damage to Mung Bean Seeds under Impact Loading. International Journal of Food Engineering, 2012, 7, .	0.7	5
22	Mechanical Damage to Pinto Bean Seeds as Affected by Moisture Content, Impact Velocity and Seed Orientation. International Journal of Food Engineering, 2012, 7, .	0.7	10
23	Impact Damage to Chickpea Seeds as Affected by Moisture Content and Impact Velocity. Applied Engineering in Agriculture, 2011, 27, 771-775.	0.3	23
24	Mechanical damage to navy beans as affected by moisture content, impact velocity and seed orientation. Quality Assurance and Safety of Crops and Foods, 2011, 3, 205-211.	1.8	24
25	Evaluation and Modeling of Physical and Physiological Damage to Wheat Seeds under Successive Impact Loadings: Mathematical and Neural Networks Modeling. Crop Science, 2008, 48, 1532-1544.	0.8	46