
Christine K Luscombe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The future of organic photovoltaics. Chemical Society Reviews, 2015, 44, 78-90.	18.7	655
2	All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18, 345202.	1.3	646
3	C–H Arylation Reaction: Atom Efficient and Greener Syntheses of π-Conjugated Small Molecules and Macromolecules for Organic Electronic Materials. Macromolecules, 2013, 46, 8059-8078.	2.2	301
4	Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication. Nano Letters, 2007, 7, 1869-1877.	4.5	297
5	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Progress in Polymer Science, 2013, 38, 1978-1989.	11.8	274
6	Externally Initiated Regioregular P3HT with Controlled Molecular Weight and Narrow Polydispersity. Journal of the American Chemical Society, 2009, 131, 12894-12895.	6.6	255
7	Enhancing the Thermal Stability of Polythiophene:Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity. Journal of the American Chemical Society, 2006, 128, 13988-13989.	6.6	225
8	Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Progress in Polymer Science, 2017, 70, 34-51.	11.8	217
9	The Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed F ₄ TCNQâ€Doped Conjugated Polymer Films. Advanced Functional Materials, 2017, 27, 1702654.	7.8	190
10	Synthesis, Characterization, and Field-Effect Transistor Performance of Carboxylate-Functionalized Polythiophenes with Increased Air Stability. Chemistry of Materials, 2005, 17, 4892-4899.	3.2	185
11	Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Applied Physics Letters, 2007, 90, 141103.	1.5	182
12	Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polymer Chemistry, 2011, 2, 2424.	1.9	180
13	Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors. Journal of the American Chemical Society, 2019, 141, 4345-4354.	6.6	179
14	Synthesis and Characterization of Thiophene-Containing Naphthalene Diimide n-Type Copolymers for OFET Applications. Macromolecules, 2010, 43, 6348-6352.	2.2	169
15	Printable polythiophene gas sensor array for low-cost electronic noses. Journal of Applied Physics, 2006, 100, 014506.	1.1	148
16	Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemicalÂtransistors. Nature Materials, 2017, 16, 737-742.	13.3	143
17	The Role of Mesoscopic PCBM Crystallites in Solvent Vapor Annealed Copolymer Solar Cells. ACS Nano, 2009, 3, 627-636.	7.3	140
18	Organometallic Donorâ^'Acceptor Conjugated Polymer Semiconductors: Tunable Optical, Electrochemical, Charge Transport, and Photovoltaic Properties. Macromolecules, 2009, 42, 671-681.	2.2	135

#	Article	IF	CITATIONS
19	Effect of Initiators on the Kumada Catalyst-Transfer Polycondensation Reaction. Macromolecules, 2009, 42, 7670-7677.	2.2	100
20	Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic–Electronic Conductors for Organic Electrochemical Transistors. Chemical Reviews, 2022, 122, 4325-4355.	23.0	100
21	Dependence of Band Offset and Open-Circuit Voltage on the Interfacial Interaction between TiO2 and Carboxylated Polythiophenes. Journal of Physical Chemistry B, 2006, 110, 3257-3261.	1.2	99
22	Synthesis and Characterization of Solution-Processable Ladderized n-Type Naphthalene Bisimide Copolymers for OFET Applications. Macromolecules, 2011, 44, 4721-4728.	2.2	99
23	Quantifying Crystallinity in High Molar Mass Poly(3-hexylthiophene). Macromolecules, 2014, 47, 3942-3950.	2.2	95
24	C–H Arylation in the Synthesis of π-Conjugated Polymers. ACS Macro Letters, 2016, 5, 724-729.	2.3	87
25	Influence of Side-Chain Chemistry on Structure and Ionic Conduction Characteristics of Polythiophene Derivatives: A Computational and Experimental Study. Chemistry of Materials, 2019, 31, 1418-1429.	3.2	84
26	Review on the Role of Polymers in Luminescent Solar Concentrators. Journal of Polymer Science Part A, 2019, 57, 201-215.	2.5	83
27	Inâ€situ Crosslinking and nâ€Doping of Semiconducting Polymers and Their Application as Efficient Electronâ€Transporting Materials in Inverted Polymer Solar Cells. Advanced Energy Materials, 2011, 1, 1148-1153.	10.2	80
28	Structure and design of polymers for durable, stretchable organic electronics. Polymer Journal, 2017, 49, 41-60.	1.3	80
29	Low Elastic Modulus and High Charge Mobility of Low-Crystallinity Indacenodithiophene-Based Semiconducting Polymers for Potential Applications in Stretchable Electronics. Macromolecules, 2018, 51, 6352-6358.	2.2	80
30	Thiophene based hyperbranched polymers with tunable branching using direct arylation methods. Polymer Chemistry, 2013, 4, 3499.	1.9	79
31	Assessing the Huang–Brown Description of Tie Chains for Charge Transport in Conjugated Polymers. ACS Macro Letters, 2018, 7, 1333-1338.	2.3	79
32	Lithography-free high-resolution organic transistor arrays onÂpolymer substrate by low energy selective laser ablation ofÂinkjet-printed nanoparticle film. Applied Physics A: Materials Science and Processing, 2008, 92, 579-587.	1.1	77
33	A Reversible Structural Phase Transition by Electrochemically-Driven Ion Injection into a Conjugated Polymer. Journal of the American Chemical Society, 2020, 142, 7434-7442.	6.6	74
34	Effect of Regioregularity on Charge Transport and Structural and Excitonic Coherence in Poly(3-hexylthiophene) Nanowires. Journal of Physical Chemistry C, 2015, 119, 14911-14918.	1.5	71
35	Spectral Signatures and Spatial Coherence of Bound and Unbound Polarons in P3HT Films: Theory Versus Experiment. Journal of Physical Chemistry C, 2018, 122, 18048-18060.	1.5	70
36	Modification of PCBM Crystallization via Incorporation of C ₆₀ in Polymer/Fullerene Solar Cells. Advanced Functional Materials, 2013, 23, 514-522.	7.8	68

#	Article	IF	CITATIONS
37	Quantum-cutting Yb ³⁺ -doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. Journal of Materials Chemistry A, 2019, 7, 9279-9288.	5.2	67
38	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	11.7	66
39	Steric Stabilization Effects in Nickel-Catalyzed Regioregular Poly(3-hexylthiophene) Synthesis. Macromolecules, 2009, 42, 9387-9389.	2.2	65
40	Constructing Regioregular Star Poly(3-hexylthiophene) via Externally Initiated Kumada Catalyst-Transfer Polycondensation. ACS Macro Letters, 2012, 1, 392-395.	2.3	65
41	Low incidence of microplastic contaminants in Pacific oysters (Crassostrea gigas Thunberg) from the Salish Sea, USA. Science of the Total Environment, 2020, 715, 136826.	3.9	65
42	Influence of fluorine substituents on the film dielectric constant and open-circuit voltage in organic photovoltaics. Journal of Materials Chemistry C, 2014, 2, 3278-3284.	2.7	64
43	Synthesis, Structure Revision, and Absolute Configuration of (+)-Didemniserinolipid B, a Serinol Marine Natural Product from a TunicateDidemnumsp Organic Letters, 2002, 4, 3223-3226.	2.4	63
44	Controlling Vertical Morphology within the Active Layer of Organic Photovoltaics Using Poly(3-hexylthiophene) Nanowires and Phenyl-C61-butyric Acid Methyl Ester. ACS Nano, 2011, 5, 3132-3140.	7.3	61
45	Steric Effects of the Initiator Substituent Position on the Externally Initiated Polymerization of 2-Bromo-5-iodo-3-hexylthiophene. Macromolecules, 2011, 44, 512-520.	2.2	60
46	Surface-Initiated Synthesis of Poly(3-methylthiophene) from Indium Tin Oxide and its Electrochemical Properties. Langmuir, 2012, 28, 1900-1908.	1.6	59
47	Oligoselenophene Derivatives Functionalized with a Diketopyrrolopyrrole Core for Molecular Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 271-278.	4.0	58
48	P-Type Electrochemical Doping Can Occur by Cation Expulsion in a High-Performing Polymer for Organic Electrochemical Transistors. , 2020, 2, 254-260.		53
49	Fluorinated Silane Self-Assembled Monolayers as Resists for Patterning Indium Tin Oxide. Langmuir, 2003, 19, 5273-5278.	1.6	52
50	Recent Developments in C–H Activation for Materials Science in the Center for Selective C–H Activation. Molecules, 2018, 23, 922.	1.7	47
51	The Effects of Binding Ligand Variation on the Nickel Catalyzed Externally Initiated Polymerization of 2â€Bromoâ€3â€hexylâ€5â€iodothiophene. Macromolecular Chemistry and Physics, 2009, 210, 1966-1972.	1.1	46
52	Crystallinity Effects in Sequentially Processed and Blend-Cast Bulk-Heterojunction Polymer/Fullerene Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 18424-18435.	1.5	46
53	Morphological effects on polymeric mixed ionic/electronic conductors. Molecular Systems Design and Engineering, 2019, 4, 310-324.	1.7	46
54	Synthesis and characterization of fused-thiophene containing naphthalene diimide <i>n</i> -type copolymers for organic thin film transistor and all-polymer solar cell applications. Journal of Polymer Science Part A, 2013, 51, 4061-4069.	2.5	45

#	Article	IF	CITATIONS
55	N-Type Hyperbranched Polymers for Supercapacitor Cathodes with Variable Porosity and Excellent Electrochemical Stability. Macromolecules, 2015, 48, 5196-5203.	2.2	44
56	Determination of the Molecular Weight of Conjugated Polymers with Diffusion-Ordered NMR Spectroscopy. Chemistry of Materials, 2018, 30, 570-576.	3.2	44
57	Recent Advances in the Green, Sustainable Synthesis of Semiconducting Polymers. Trends in Chemistry, 2019, 1, 670-681.	4.4	42
58	Towards Green Synthesis and Processing of Organic Solar Cells. Chemical Record, 2019, 19, 1039-1049.	2.9	41
59	Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor–Acceptor Copolymers. Chemistry of Materials, 2019, 31, 7033-7045.	3.2	39
60	The effect of side chain engineering on conjugated polymers in organic electrochemical transistors for bioelectronic applications. Journal of Materials Chemistry C, 2022, 10, 2314-2332.	2.7	39
61	Benzo[2,1â€ <i>b</i> ;3,4â€ <i>b</i> ′]dithiopheneâ€based lowâ€bandgap polymers for photovoltaic applicatior Journal of Polymer Science Part A, 2011, 49, 701-711.	^{1S} .2.5	38
62	Preparation of an Aurylated Alkylthiophene Monomer via C–H Activation for Use in Pd-PEPPSI-iPr Catalyzed-Controlled Chain Growth Polymerization. ACS Macro Letters, 2016, 5, 533-536.	2.3	38
63	An indacenodithiophene-based semiconducting polymer with high ductility for stretchable organic electronics. Polymer Chemistry, 2017, 8, 5185-5193.	1.9	38
64	Dual-Catalytic Ag–Pd System for Direct Arylation Polymerization to Synthesize Poly(3-hexylthiophene). ACS Macro Letters, 2018, 7, 767-771.	2.3	38
65	Low Bandgap Polymers Based on Silafluorene Containing Multifused Heptacylic Arenes for Photovoltaic Applications. Macromolecules, 2012, 45, 5934-5940.	2.2	37
66	Simple procedure for mono- and bis-end-functionalization of regioregular poly(3-hexylthiophene)s using chalcogens. Chemical Communications, 2014, 50, 5310-5312.	2.2	36
67	Coherent Spin Precession and Lifetime-Limited Spin Dephasing in CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2020, 20, 8626-8633.	4.5	36
68	Complex Relationship between Side-Chain Polarity, Conductivity, and Thermal Stability in Molecularly Doped Conjugated Polymers. Chemistry of Materials, 2021, 33, 741-753.	3.2	36
69	Unraveling the Effect of Conformational and Electronic Disorder in the Charge Transport Processes of Semiconducting Polymers. Advanced Functional Materials, 2018, 28, 1804142.	7.8	34
70	Self-Assembled Amphiphilic Block Copolymers/CdTe Nanocrystals for Efficient Aqueous-Processed Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 17942-17948.	4.0	32
71	P3HT:PCBM polymer solar cells with TiO2 nanotube aggregates in the active layer. Journal of Materials Chemistry, 2010, 20, 2612.	6.7	30
72	Sulfur copolymer for the direct synthesis of ligand-free CdS nanoparticles. Chemical Communications, 2015, 51, 11244-11247.	2.2	30

#	Article	IF	CITATIONS
73	Nanoparticle Ligands and Pyrolized Graphitic Carbon in CZTSSe Photovoltaic Devices. Chemistry of Materials, 2016, 28, 135-145.	3.2	30
74	Fully Conjugated Graft Copolymers Comprising a P-Type Donor–Acceptor Backbone and Poly(3-hexylthiophene) Side Chains Synthesized Via a "Graft Through―Approach. Macromolecules, 2014, 47, 5019-5028.	2.2	29
75	Solvatochromism and Conformational Changes in Fully Dissolved Poly(3-alkylthiophene)s. Langmuir, 2015, 31, 458-468.	1.6	28
76	Low Boiling Point Solvent Additives for Improved Photooxidative Stability in Organic Photovoltaics. Advanced Electronic Materials, 2018, 4, 1700416.	2.6	25
77	Ï€-Conjugated polymer nanowires: advances and perspectives toward effective commercial implementation. Polymer Journal, 2018, 50, 659-669.	1.3	25
78	Exploration and development of gold- and silver-catalyzed cross dehydrogenative coupling toward donor–acceptor π-conjugated polymer synthesis. Polymer Chemistry, 2019, 10, 486-493.	1.9	25
79	Elucidating the Influence of Side-Chain Circular Distribution on the Crack Onset Strain and Hole Mobility of Near-Amorphous Indacenodithiophene Copolymers. Macromolecules, 2020, 53, 7511-7518.	2.2	25
80	Organic Semiconductors at the University of Washington: Advancements in Materials Design and Synthesis and toward Industrial Scale Production. Advanced Materials, 2021, 33, e1904239.	11.1	25
81	Side chain engineering control of mixed conduction in oligoethylene glycol-substituted polythiophenes. Journal of Materials Chemistry A, 2021, 9, 21410-21423.	5.2	25
82	Conjugated Metal–Organic Macrocycles: Synthesis, Characterization, and Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 4515-4521.	6.6	25
83	Circular Discovery in Small Molecule and Conjugated Polymer Synthetic Methodology. Journal of the American Chemical Society, 2022, 144, 6123-6135.	6.6	25
84	Modular Zwitterion-Functionalized Poly(isopropyl methacrylate) Polymers for Hosting Luminescent Lead Halide Perovskite Nanocrystals. Chemistry of Materials, 2021, 33, 3779-3790.	3.2	24
85	Assessment of molecular dynamics simulations for amorphous poly(3-hexylthiophene) using neutron and X-ray scattering experiments. Soft Matter, 2019, 15, 5067-5083.	1.2	22
86	The Role of Tie Chains on the Mechanoâ€Electrical Properties of Semiconducting Polymer Films. Advanced Electronic Materials, 2020, 6, 1901070.	2.6	21
87	Sonocrystallization of conjugated polymers with ultrasound fields. Soft Matter, 2018, 14, 4963-4976.	1.2	20
88	Advances in applying C–H functionalization and naturally sourced building blocks in organic semiconductor synthesis. Journal of Materials Chemistry C, 2021, 9, 16391-16409.	2.7	20
89	TiO2 nanowire electron transport pathways inside organic photovoltaics. Physical Chemistry Chemical Physics, 2013, 15, 4566.	1.3	19
90	Straightening Single-Walled Carbon Nanotubes by Adsorbed Rigid Poly(3-hexylthiophene) Chains via π–π Interaction. Journal of Physical Chemistry C, 2016, 120, 27665-27674.	1.5	19

#	Article	IF	CITATIONS
91	Macroscopically aligned nanowire arrays of π-conjugated polymers via shear-enhanced crystallization. Journal of Materials Chemistry C, 2017, 5, 5128-5134.	2.7	19
92	Role of Postdeposition Thermal Annealing on Intracrystallite and Intercrystallite Structuring and Charge Transport in Poly(3-hexylthiophene). ACS Applied Materials & Interfaces, 2021, 13, 999-1007.	4.0	19
93	A one pot organic/CdSe nanoparticle hybrid material synthesis with in situ π-conjugated ligand functionalization. Chemical Communications, 2013, 49, 1321.	2.2	18
94	Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching. Green Chemistry, 2019, 21, 6600-6605.	4.6	18
95	Organic building blocks at inorganic nanomaterial interfaces. Materials Horizons, 2022, 9, 61-87.	6.4	18
96	Impact of varying side chain structure on organic electrochemical transistor performance: a series of oligoethylene glycol-substituted polythiophenes. Journal of Materials Chemistry A, 2022, 10, 10738-10749.	5.2	18
97	Synthesis of Supercritical Carbon Dioxide Soluble Perfluorinated Dendrons for Surface Modification. Journal of Organic Chemistry, 2007, 72, 5505-5513.	1.7	17
98	High-efficiency, Cd-free copper–indium–gallium–diselenide/polymer hybrid solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 807-812.	3.0	15
99	Granular magnetoresistance in cobalt/poly (3-hexylthiophene, 2, 5-diyl) hybrid thin films prepared by a wet chemical method. Applied Physics Letters, 2009, 95, .	1.5	15
100	Strategies for the Development of Conjugated Polymer Molecular Dynamics Force Fields Validated with Neutron and X-ray Scattering. ACS Polymers Au, 2021, 1, 134-152.	1.7	15
101	Direct Patterning of Perovskite Nanocrystals on Nanophotonic Cavities with Electrohydrodynamic Inkjet Printing. Nano Letters, 2022, 22, 5681-5688.	4.5	15
102	Roomâ€ŧemperature carbon–sulfur bond formation from Ni(II) σâ€∎ryl complex via cleavage of the S–S bond of disulfide moieties. Applied Organometallic Chemistry, 2013, 27, 639-643.	1.7	14
103	Room Temperature C–H Arylation of Benzofurans by Aryl Iodides. Organic Letters, 2021, 23, 7079-7082.	2.4	14
104	Room-temperature Pd/Ag direct arylation enabled by a radical pathway. Beilstein Journal of Organic Chemistry, 2020, 16, 384-390.	1.3	13
105	An Exception to the Carothers Equation Caused by the Accelerated Chain Extension in a Pd/Ag Cocatalyzed Cross Dehydrogenative Coupling Polymerization. Journal of the American Chemical Society, 2022, 144, 2311-2322.	6.6	13
106	In Situ Studies of the Swelling by an Electrolyte in Electrochemical Doping of Ethylene Glycol-Substituted Polythiophene. ACS Applied Materials & Interfaces, 2022, 14, 29052-29060.	4.0	13
107	Progress in the Synthesis of Poly (3-hexylthiophene). Advances in Polymer Science, 2014, , 1-38.	0.4	11
108	Identifying effects of TiO2 nanowires inside bulk heterojunction organic photovoltaics on charge diffusion and recombination. Journal of Materials Chemistry C, 2014, 2, 4922-4927.	2.7	11

#	Article	IF	CITATIONS
109	Correlating conductivity and Seebeck coefficient to doping within crystalline and amorphous domains in poly(3â€(methoxyethoxyethoxy)thiophene). Journal of Polymer Science, 2021, 59, 2797-2808.	2.0	11
110	Reconsidering terms for mechanisms of polymer growth: the "step-growth―and "chain-growth― dilemma. Polymer Chemistry, 2022, 13, 2262-2270.	1.9	11
111	Synthesis and characterization of polyarylacetylene for use in the monolithic vitreous carbon processing. Polimeros, 2014, 24, 541-546.	0.2	10
112	Direct Arylation Polycondensation of 2,5-Dithienylsilole with a Series of Difluorobenzodiimine-Based Electron Acceptors. Macromolecules, 2017, 50, 4623-4628.	2.2	10
113	Defect Tolerance of ï€-Conjugated Polymer Crystal Lattices and Their Relevance to Optoelectronic Applications. ACS Applied Polymer Materials, 2019, 1, 1466-1475.	2.0	10
114	Generalizable Framework for Algorithmic Interpretation of Thin Film Morphologies in Scanning Probe Images. Journal of Chemical Information and Modeling, 2020, 60, 3387-3397.	2.5	10
115	Measurement of the Internal Orbital Alignment of Oligothiophene-TiO2 Nanoparticle Hybrids. Journal of Physical Chemistry C, 2013, 117, 13961-13970.	1.5	9
116	Blend Morphology in Polythiophene–Polystyrene Composites from Neutron and X-ray Scattering. Macromolecules, 2021, 54, 2960-2978.	2.2	9
117	OTFT performance of air-stable ester-functionalized polythiophenes. Journal of Materials Chemistry, 2010, 20, 3040.	6.7	8
118	Planar holographic spectrum-splitting PV module design. , 2012, , .		8
119	The Direct Arylation Polymerization (DArP) of Wellâ€Defined Alternating Copolymers Based On 5,6â€Dicyano[2,1,3]benzothiadiazole (DCBT). Asian Journal of Organic Chemistry, 2018, 7, 1419-1425.	1.3	8
120	Green syntheses of stable and efficient organic dyes for organic hybrid light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 7274-7283.	2.7	8
121	Triarylborane-BODIPY conjugate: An efficient non-fullerene electron acceptor for bulk heterojunction organic solar cell. Solar Energy, 2021, 230, 242-249.	2.9	8
122	End-Functionalized Semiconducting Polymers as Reagents in the Synthesis of Hybrid II–VI Nanoparticles. Langmuir, 2018, 34, 9692-9700.	1.6	7
123	Ligand Pyrolysis during Air-Free Inorganic Nanocrystal Synthesis. Chemistry of Materials, 2021, 33, 136-145.	3.2	7
124	Theoretical background on semiconducting polymers and their applications to OSCs and OLEDs. Chemistry Teacher International, 2021, 3, 169-183.	0.9	7
125	Gaining control over conjugated polymer morphology to improve the performance of organic electronics. Chemical Communications, 2022, 58, 6982-6997.	2.2	7
126	Synthesis of Arylamine Tribenzopentaphenes and Investigation of their Hole Mobility. ChemistryOpen, 2015, 4, 453-456.	0.9	6

#	Article	IF	CITATIONS
127	Microwave dielectric properties of polytetrafluoroethylene-polyacrylate composite films made via aerosol deposition. Polymer International, 2016, 65, 820-826.	1.6	6
128	Naturally Derived Organic Dyes for LED Lightings of High Color Rendering and Fidelity Index. Advanced Sustainable Systems, 2022, 6, 2000300.	2.7	6
129	A concise guide to polymer nomenclature for authors of papers and reports in polymer science and technology (IUPAC Technical Report). Pure and Applied Chemistry, 2020, 92, 797-813.	0.9	6
130	Preparation of Titanium Oxide Pillars on Glass Substrates and Ultrathin Titanium Oxide Layer using PMMA/PS Blend Films. Journal of Physical Chemistry C, 2008, 112, 7886-7894.	1.5	5
131	Investigation of Bimetallic Nickel Catalysts in Catalystâ€Transfer Polymerization of Ï€â€Conjugated Polymers. Macromolecular Chemistry and Physics, 2020, 221, 1900363.	1.1	5
132	Quo Vadis, Macromolecular Science? Reflections by the IUPAC Polymer Division on the Occasion of the Staudinger Centenary. Israel Journal of Chemistry, 2020, 60, 9-19.	1.0	5
133	Ionic Dopantâ€Induced Ordering Enhances the Thermoelectric Properties of a Polythiopheneâ€Based Block Copolymer. Advanced Functional Materials, 2021, 31, 2106991.	7.8	5
134	Solution processed lowâ€k dielectric coreâ€shell nanoparticles for additive manufacturing of microwave devices. Journal of Applied Polymer Science, 2017, 134, 45335.	1.3	4
135	Algorithmically extracted morphology descriptions for predicting device performance. Computational Materials Science, 2021, 197, 110599.	1.4	4
136	Orbital alignment at the internal interface of arylthiol functionalized CdSe molecular hybrids. Journal of Applied Physics, 2015, 117, 155501.	1.1	3
137	Poly(3-hexylthiophene) End-Functionalization via Quenching Resulting in Heteroatom-Bond Formation. Australian Journal of Chemistry, 2016, 69, 701.	0.5	3
138	Enhanced miscibility and strain resistance of blended elastomer/΀ onjugated polymer composites through side chain functionalization towards stretchable electronics. Polymer International, 2020, 69, 308-316.	1.6	3
139	Terminology of polymers in advanced lithography (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1861-1891.	0.9	2
140	Holographic spectral beamsplitting for increased organic photovoltaic conversion efficiency. Proceedings of SPIE, 2014, , .	0.8	1
141	Towards the synthesis of poly(azafulleroid)s: main chain fullerene oligomers for organic photovoltaic devices. Polymer International, 2017, 66, 1364-1371.	1.6	1
142	Structural and Morphological Characterization of Novel Organic Electrochemical Transistors via Four-dimensional (4D) Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 1792-1794.	0.2	1
143	Preface to the Special Issue of ChemSusChem on Advanced Organic Solar Cells. ChemSusChem, 2021, 14, 3426-3427.	3.6	1
144	Non-toxic, colloidal ZnS-AgInS <inf>2</inf> nanoparticles for organic-inorganic hybrid photovoltaics.		0

, 2014, , .

#	Article	IF	CITATIONS
145	Synthesis of Ligand-free CdS Nanoparticles within a Sulfur Copolymer Matrix. Journal of Visualized Experiments, 2016, , .	0.2	0
146	List of keywords for polymer science (IUPAC Technical Report). Pure and Applied Chemistry, 2019, 91, 997-1027.	0.9	0
147	Macromolecular Science Turns 100. Chemistry International, 2021, 43, 4-9.	0.3	0
148	Chapter 14. Nanostructure Manipulation in Organic Solar Cells. RSC Nanoscience and Nanotechnology, 2012, , 359-391.	0.2	0
149	Cover Image, Volume 66, Issue 10. Polymer International, 2017, 66, i-i.	1.6	0
150	(Invited) One-Pot Syntheses of Polymer/Cd Chalcogenide Hybrids for Optoelectronic Applications. ECS Meeting Abstracts, 2018, , .	0.0	0
151	(Invited) Amphiphilic Block Copolymers and Their Hybrids for Efficient Aqueous-Processed Solar Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
152	Combined computational and experimental study on the effects of side-chain architecture of polythiophene derivatives on structure and ionic conduction. , 0, , .		0
153	An elegant molecule and a celebrated polymer chemist. Chemistry International, 2020, 42, 48-48.	0.3	0
154	X-ray and Neutron Scattering Analysis of Polymer Blends Composed of Conjugated and Non-Conjugated Components. , 0, , .		0
155	Environmental Chemistry and Sustainability. Chemistry International, 2022, 44, 45-48.	0.3	0
156	(Invited) Organic Dyes Derived from Molecules in Cacao Beans for Use in Lighting Applications. ECS Meeting Abstracts, 2022, MA2022-01, 1101-1101.	0.0	0