Li-Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three dimensional N-doped graphene–CNT networks for supercapacitor. Chemical Communications, 2013, 49, 5016.	4.1	349
2	Surface and interface design in cocatalysts for photocatalytic water splitting and CO ₂ reduction. RSC Advances, 2016, 6, 57446-57463.	3.6	178
3	Designing pâ€Type Semiconductor–Metal Hybrid Structures for Improved Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, 5107-5111.	13.8	176
4	Synthesis of MnO@C core–shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 17864.	6.7	114
5	Synthesis of Fe3O4@C core–shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale, 2013, 5, 3627.	5.6	94
6	Electrochemical performance of rod-like Sb–C composite as anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3276-3280.	10.3	94
7	Fe ₃ O ₄ nanoflakes in an N-doped carbon matrix as high-performance anodes for lithium ion batteries. Nanoscale, 2015, 7, 10123-10129.	5.6	60
8	Novel 3D Network Architectured Hybrid Aerogel Comprising Epoxy, Graphene, and Hydroxylated Boron Nitride Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 40032-40043.	8.0	45
9	Ferric chlorideâ€Graphite Intercalation Compounds as Anode Materials for Liâ€ion Batteries. ChemSusChem, 2014, 7, 87-91.	6.8	44
10	Improving the Energy Storage Performance of Graphene through Insertion of Pristine CNTs and Ordered Mesoporous Carbon Coating. ChemElectroChem, 2014, 1, 772-778.	3.4	43
11	A FeCl ₂ -graphite sandwich composite with Cl doping in graphite layers: a new anode material for high-performance Li-ion batteries. Nanoscale, 2014, 6, 14174-14179.	5.6	42
12	Flow cytometric analysis of CK19 expression in the peripheral blood of breast carcinoma patients: relevance for circulating tumor cell detection. Journal of Experimental and Clinical Cancer Research, 2009, 28, 57.	8.6	36
13	Phosphorus-doped hard carbon with controlled active groups and microstructure for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 20486-20492.	10.3	33
14	Fabrication of Fully Bio-Based Aerogels via Microcrystalline Cellulose and Hydroxyapatite Nanorods with Highly Effective Flame-Retardant Properties. ACS Applied Nano Materials, 2018, 1, 1921-1931.	5.0	32
15	WO ₃ nanocubes: Hydrothermal synthesis, growth mechanism, and photocatalytic performance. Journal of Materials Research, 2019, 34, 2955-2963.	2.6	31
16	Comparative Studies on Thermal, Mechanical, and Flame Retardant Properties of PBT Nanocomposites via Different Oxidation State Phosphorus-Containing Agents Modified Amino-CNTs. Nanomaterials, 2018, 8, 70.	4.1	26
17	Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS ₂ /C interoverlapped superstructure with robust charge transfer networks. Journal of Materials Chemistry A, 2020, 8, 15002-15011.	10.3	26
18	Uniformly dispersed Sn-MnO@C nanocomposite derived from MnSn(OH)6 precursor as anode material for lithium-ion batteries. Electrochimica Acta, 2014, 121, 21-26.	5.2	25

LI-LI WANG

#	Article	IF	CITATIONS
19	Comparison between SnSb–C and Sn–C composites as anode materials for lithium-ion batteries. RSC Advances, 2014, 4, 62301-62307.	3.6	23
20	Simultaneous enhancements in the mechanical, thermal stability, and flame retardant properties of poly(1,4-butylene terephthalate) nanocomposites with a novel phosphorus–nitrogen-containing polyhedral oligomeric silsesquioxane. RSC Advances, 2017, 7, 54021-54030.	3.6	20
21	A superficial sulfur interfacial control strategy for the fabrication of a sulfur/carbon composite for potassium–sulfur batteries. Chemical Communications, 2021, 57, 1490-1493.	4.1	19
22	N/S-Co-Doped Porous Carbon Sheets Derived from Bagasse as High-Performance Anode Materials for Sodium-Ion Batteries. Nanomaterials, 2019, 9, 1203.	4.1	17
23	Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity. Journal of Materials Science, 2021, 56, 2994-3010.	3.7	17
24	Preparation of mixed oxides Ca9Co12O28 and their electrochemical properties. Materials Letters, 2012, 82, 1-3.	2.6	16
25	Anisotropic growth of palladium twinned nanostructures controlled by kinetics and their unusual activities in galvanic replacement. Journal of Materials Chemistry, 2012, 22, 8195.	6.7	14
26	Graphene-wrapped Fe2O3 nanorings for Li ion battery anodes. Science Bulletin, 2014, 59, 4271-4273.	1.7	14
27	Sn nanoparticles uniformly dispersed in N-doped hollow carbon nanospheres as anode for lithium-ion batteries. Materials Letters, 2016, 184, 332-335.	2.6	13
28	Laserâ€Assisted Fabrication of Pseudohexagonal Phase Niobium Pentoxide Nanopillars for Lithium Ion Battery Anodes. ChemNanoMat, 2020, 6, 73-78.	2.8	11
29	Regular Mesoporous Structural FeSe@C Composite with Enhanced Reversibility for Fast and Stable Potassium Storage. Journal of Physical Chemistry C, 2021, 125, 15812-15820.	3.1	11
30	CNT threaded porous carbon nitride nanoflakes as bifunctional hosts for lithium sulfide cathode. Journal of Alloys and Compounds, 2021, 887, 161356.	5.5	10
31	Semiconductors: A Unique Semiconductor-Metal-Graphene Stack Design to Harness Charge Flow for Photocatalysis (Adv. Mater. 32/2014). Advanced Materials, 2014, 26, 5578-5578.	21.0	4
32	Lamellar network structure constructed by ZnSe/C nanorods for high-performance potassium storage. Electrochimica Acta, 2022, 419, 140405.	5.2	3
33	Lactic acid inhibits iNKT cell functions via a phosphodiesterase-5 dependent pathway. Biochemical and Biophysical Research Communications, 2021, 547, 9-14.	2.1	2
34	Facile Construction of Hierarchical TiNb2O7/rGO Nanoflower With Robust Charge Storage Properties for Li Ion Batteries via an Esterification Reaction. Frontiers in Energy Research, 2021, 9, .	2.3	2
35	N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries. Processes, 2021, 9, 1822.	2.8	1
36	Directing electrochemical reaction mechanism via interfacial control for better sulfur cathode. Applied Surface Science, 2022, 581, 152353.	6.1	0