Mark J Buckley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175696/publications.pdf Version: 2024-02-01

MARK | RUCKLEY

#	Article	IF	CITATIONS
1	A One-Shot Shift from Explore to Exploit in Monkey Prefrontal Cortex. Journal of Neuroscience, 2022, 42, 276-287.	3.6	5
2	The neural substrate and underlying mechanisms of executive control fluctuations in primates. Progress in Neurobiology, 2022, 209, 102216.	5.7	5
3	Frontopolar cortex shapes brain network structure across prefrontal and posterior cingulate cortex. Progress in Neurobiology, 2022, , 102314.	5.7	2
4	Lowâ€beta repetitive transcranial magnetic stimulation to human dorsolateral prefrontal cortex during object recognition memory sample presentation, at a taskâ€related frequency observed in local field potentials in homologous macaque cortex, impairs subsequent recollection but not familiarity. European Journal of Neuroscience, 2021, 54, 7918-7945.	2.6	3
5	The Role of Primate Prefrontal Cortex in Bias and Shift Between Visual Dimensions. Cerebral Cortex, 2020, 30, 85-99.	2.9	23
6	Focused Representation of Successive Task Episodes in Frontal and Parietal Cortex. Cerebral Cortex, 2020, 30, 1779-1796.	2.9	11
7	Emergence of abstract rules in the primate brain. Nature Reviews Neuroscience, 2020, 21, 595-610.	10.2	54
8	Behavioral flexibility is associated with changes in structure and function distributed across a frontal cortical network in macaques. PLoS Biology, 2020, 18, e3000605.	5.6	24
9	Similar time course of fast familiarity and slow recollection processes for recognition memory in humans and macaques. Learning and Memory, 2020, 27, 258-269.	1.3	5
10	Mnemonic Introspection in Macaques Is Dependent on Superior Dorsolateral Prefrontal Cortex But Not Orbitofrontal Cortex. Journal of Neuroscience, 2019, 39, 5922-5934.	3.6	19
11	Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex. ELife, 2019, 8, .	6.0	19
12	Functional reorganisation and recovery following cortical lesions: A preliminary study in macaque monkeys. Neuropsychologia, 2018, 119, 382-391.	1.6	11
13	A new approach to solving the feature-binding problem in primate vision. Interface Focus, 2018, 8, 20180021.	3.0	15
14	Context-Dependent Adjustments in Executive Control of Goal-Directed Behaviour: Contribution of Frontal Brain Areas to Conflict-Induced Behavioural Adjustments in Primates. Advances in Neurobiology, 2018, 21, 71-83.	1.8	6
15	Monitoring Demands for Executive Control: Shared Functions between Human and Nonhuman Primates. Trends in Neurosciences, 2017, 40, 15-27.	8.6	70
16	Managing competing goals — a key role for the frontopolar cortex. Nature Reviews Neuroscience, 2017, 18, 645-657.	10.2	208
17	Transcranial magnetic stimulation to dorsolateral prefrontal cortex affects conflict-induced behavioural adaptation in a Wisconsin Card Sorting Test analogue. Neuropsychologia, 2017, 94, 36-43.	1.6	18
18	Distinct Roles for the Anterior Cingulate and Dorsolateral Prefrontal Cortices During Conflict Between Abstract Rules. Cerebral Cortex, 2017, 27, 34-45.	2.9	22

Mark J Buckley

#	Article	lF	CITATIONS
19	Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task. Nature Communications, 2017, 8, 1886.	12.8	44
20	Retrosplenial Cortical Contributions to Anterograde and Retrograde Memory in the Monkey. Cerebral Cortex, 2016, 26, 2905-2918.	2.9	32
21	A Putative Multiple-Demand System in the Macaque Brain. Journal of Neuroscience, 2016, 36, 8574-8585.	3.6	41
22	Differential contributions of dorsolateral and frontopolar cortices to working memory processes in the primate. Frontiers in Systems Neuroscience, 2015, 9, 144.	2.5	10
23	Essential functions of primate frontopolar cortex in cognition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1020-7.	7.1	82
24	Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3940-9.	7.1	78
25	Adaptability to changes in temporal structure is fornix-dependent. Learning and Memory, 2015, 22, 354-359.	1.3	6
26	Cognitive Control Functions of Anterior Cingulate Cortex in Macaque Monkeys Performing a Wisconsin Card Sorting Test Analog. Journal of Neuroscience, 2014, 34, 7531-7547.	3.6	35
27	The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment. Journal of Neuroscience, 2014, 34, 11016-11031.	3.6	51
28	Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning. Neuron, 2010, 65, 927-939.	8.1	344
29	ls Top-Down Control from Prefrontal Cortex Necessary for Visual Categorization?. Neuron, 2010, 66, 471-473.	8.1	7
30	The Representation of Abstract Task Rules in the Human Prefrontal Cortex. Cerebral Cortex, 2009, 19, 1929-1936.	2.9	53
31	Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience, 2009, 10, 141-152.	10.2	517
32	Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial and Prefrontal Regions. Science, 2009, 325, 52-58.	12.6	270
33	Frontal Cortex Subregions Play Distinct Roles in Choices between Actions and Stimuli. Journal of Neuroscience, 2008, 28, 13775-13785.	3.6	299
34	Fornix transection impairs visuospatial memory acquisition more than retrieval Behavioral Neuroscience, 2008, 122, 44-53.	1.2	27
35	Mnemonic Function of the Dorsolateral Prefrontal Cortex in Conflict-Induced Behavioral Adjustment. Science, 2007, 318, 987-990.	12.6	161
36	Perirhinal cortical contributions to object perception. Trends in Cognitive Sciences, 2006, 10, 100-107.	7.8	130

#	Article	IF	CITATIONS
37	The Role of the Perirhinal Cortex and Hippocampus in Learning, Memory, and Perception. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2005, 58, 246-268.	2.8	107
38	Learning and Retrieval of Concurrently Presented Spatial Discrimination Tasks: Role of the Fornix Behavioral Neuroscience, 2004, 118, 138-149.	1.2	48