Mark J Buckley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175696/publications.pdf

Version: 2024-02-01

331670 315739 2,864 38 21 38 citations h-index g-index papers 41 41 41 3312 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience, 2009, 10, 141-152.	10.2	517
2	Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning. Neuron, 2010, 65, 927-939.	8.1	344
3	Frontal Cortex Subregions Play Distinct Roles in Choices between Actions and Stimuli. Journal of Neuroscience, 2008, 28, 13775-13785.	3.6	299
4	Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial and Prefrontal Regions. Science, 2009, 325, 52-58.	12.6	270
5	Managing competing goals — a key role for the frontopolar cortex. Nature Reviews Neuroscience, 2017, 18, 645-657.	10.2	208
6	Mnemonic Function of the Dorsolateral Prefrontal Cortex in Conflict-Induced Behavioral Adjustment. Science, 2007, 318, 987-990.	12.6	161
7	Perirhinal cortical contributions to object perception. Trends in Cognitive Sciences, 2006, 10, 100-107.	7.8	130
8	The Role of the Perirhinal Cortex and Hippocampus in Learning, Memory, and Perception. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2005, 58, 246-268.	2.8	107
9	Essential functions of primate frontopolar cortex in cognition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1020-7.	7.1	82
10	Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3940-9.	7.1	78
11	Monitoring Demands for Executive Control: Shared Functions between Human and Nonhuman Primates. Trends in Neurosciences, 2017, 40, 15-27.	8.6	70
12	Emergence of abstract rules in the primate brain. Nature Reviews Neuroscience, 2020, 21, 595-610.	10.2	54
13	The Representation of Abstract Task Rules in the Human Prefrontal Cortex. Cerebral Cortex, 2009, 19, 1929-1936.	2.9	53
14	The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment. Journal of Neuroscience, 2014, 34, 11016-11031.	3.6	51
15	Learning and Retrieval of Concurrently Presented Spatial Discrimination Tasks: Role of the Fornix Behavioral Neuroscience, 2004, 118, 138-149.	1.2	48
16	Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task. Nature Communications, 2017, 8, 1886.	12.8	44
17	A Putative Multiple-Demand System in the Macaque Brain. Journal of Neuroscience, 2016, 36, 8574-8585.	3.6	41
18	Cognitive Control Functions of Anterior Cingulate Cortex in Macaque Monkeys Performing a Wisconsin Card Sorting Test Analog. Journal of Neuroscience, 2014, 34, 7531-7547.	3.6	35

#	Article	IF	Citations
19	Retrosplenial Cortical Contributions to Anterograde and Retrograde Memory in the Monkey. Cerebral Cortex, 2016, 26, 2905-2918.	2.9	32
20	Fornix transection impairs visuospatial memory acquisition more than retrieval Behavioral Neuroscience, 2008, 122, 44-53.	1.2	27
21	Behavioral flexibility is associated with changes in structure and function distributed across a frontal cortical network in macaques. PLoS Biology, 2020, 18, e3000605.	5.6	24
22	The Role of Primate Prefrontal Cortex in Bias and Shift Between Visual Dimensions. Cerebral Cortex, 2020, 30, 85-99.	2.9	23
23	Distinct Roles for the Anterior Cingulate and Dorsolateral Prefrontal Cortices During Conflict Between Abstract Rules. Cerebral Cortex, 2017, 27, 34-45.	2.9	22
24	Mnemonic Introspection in Macaques Is Dependent on Superior Dorsolateral Prefrontal Cortex But Not Orbitofrontal Cortex. Journal of Neuroscience, 2019, 39, 5922-5934.	3.6	19
25	Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex. ELife, 2019, 8, .	6.0	19
26	Transcranial magnetic stimulation to dorsolateral prefrontal cortex affects conflict-induced behavioural adaptation in a Wisconsin Card Sorting Test analogue. Neuropsychologia, 2017, 94, 36-43.	1.6	18
27	A new approach to solving the feature-binding problem in primate vision. Interface Focus, 2018, 8, 20180021.	3.0	15
28	Functional reorganisation and recovery following cortical lesions: A preliminary study in macaque monkeys. Neuropsychologia, 2018, 119, 382-391.	1.6	11
29	Focused Representation of Successive Task Episodes in Frontal and Parietal Cortex. Cerebral Cortex, 2020, 30, 1779-1796.	2.9	11
30	Differential contributions of dorsolateral and frontopolar cortices to working memory processes in the primate. Frontiers in Systems Neuroscience, 2015, 9, 144.	2.5	10
31	Is Top-Down Control from Prefrontal Cortex Necessary for Visual Categorization?. Neuron, 2010, 66, 471-473.	8.1	7
32	Adaptability to changes in temporal structure is fornix-dependent. Learning and Memory, 2015, 22, 354-359.	1.3	6
33	Context-Dependent Adjustments in Executive Control of Goal-Directed Behaviour: Contribution of Frontal Brain Areas to Conflict-Induced Behavioural Adjustments in Primates. Advances in Neurobiology, 2018, 21, 71-83.	1.8	6
34	Similar time course of fast familiarity and slow recollection processes for recognition memory in humans and macaques. Learning and Memory, 2020, 27, 258-269.	1.3	5
35	A One-Shot Shift from Explore to Exploit in Monkey Prefrontal Cortex. Journal of Neuroscience, 2022, 42, 276-287.	3.6	5
36	The neural substrate and underlying mechanisms of executive control fluctuations in primates. Progress in Neurobiology, 2022, 209, 102216.	5.7	5

MARK J BUCKLEY

#	Article	IF	CITATIONS
37	Lowâ€beta repetitive transcranial magnetic stimulation to human dorsolateral prefrontal cortex during object recognition memory sample presentation, at a taskâ€related frequency observed in local field potentials in homologous macaque cortex, impairs subsequent recollection but not familiarity. European Journal of Neuroscience, 2021, 54, 7918-7945.	2.6	3
38	Frontopolar cortex shapes brain network structure across prefrontal and posterior cingulate cortex. Progress in Neurobiology, 2022, , 102314.	5.7	2