Mariateresa Fulciniti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11756105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic IncRNA Network. Methods in Molecular Biology, 2021, 2348, 189-204.	0.4	12
2	The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia, 2020, 34, 167-179.	3.3	11
3	Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. Journal of Clinical Oncology, 2020, 38, 3107-3118.	0.8	45
4	A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia, 2019, 33, 159-170.	3.3	313
5	Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature Communications, 2019, 10, 3835.	5.8	183
6	Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 2018, 32, 1948-1957.	3.3	179
7	Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood, 2018, 132, 587-597.	0.6	335
8	Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1364-1375.	1.9	94
9	Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1364-1375.	1.9	60
10	Deficiency of IL-17A, but not the prototypical Th17 transcription factor RORÎ ³ t, decreases murine spontaneous intestinal tumorigenesis. Cancer Immunology, Immunotherapy, 2016, 65, 13-24.	2.0	10
11	The Cyclophilin A–CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nature Medicine, 2015, 21, 572-580.	15.2	79
12	Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Communications, 2014, 5, 2997.	5.8	741
13	Role of Wnt Signaling Pathways in Multiple Myeloma Pathogenesis. , 2013, , 85-95.		1
14	Targeted Disruption of the BCL9/β-Catenin Complex Inhibits Oncogenic Wnt Signaling. Science Translational Medicine, 2012, 4, 148ra117.	5.8	214
15	Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood, 2012, 120, 1877-1887.	0.6	162
16	Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood, 2012, 119, 5772-5781.	0.6	353
17	PI3K/p110δis a novel therapeutic target in multiple myeloma. Blood, 2010, 116, 1460-1468.	0.6	177
18	Elevated IL-17 produced by Th17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood, 2010, 115, 5385-5392.	0.6	300

#	Article	IF	CITATIONS
19	Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5124-5129.	3.3	196
20	The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells <i>In vitro</i> and <i>In vivo</i> . Clinical Cancer Research, 2009, 15, 4028-4037.	3.2	200
21	Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. Journal of Clinical Investigation, 2008, 118, 491-504.	3.9	202