Gerald S Pullman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11755945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cellular and molecular biology of conifer embryogenesis. New Phytologist, 2007, 176, 511-536.	3.5	121
2	Evidence for stageâ€specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (<i>Pinus taeda</i>). New Phytologist, 2008, 179, 67-80.	3.5	75
3	Expressed Sequence Tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Molecular Biology, 2006, 62, 485-501.	2.0	69
4	An Aquaglyceroporin Is Abundantly Expressed Early in the Development of the Suspensor and the Embryo Proper of Loblolly Pine. Plant Physiology, 2001, 127, 1556-1567.	2.3	53
5	Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates. Annals of Forest Science, 2002, 59, 663-668.	0.8	49
6	Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New Forests, 2014, 45, 353-377.	0.7	45
7	Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers. Plant Cell Reports, 2007, 26, 873-887.	2.8	44
8	Loblolly pine (Pinus taeda L.) somatic embryogenesis: maturation improvements by metal analyses of zygotic and somatic embryos. Plant Science, 2003, 164, 955-969.	1.7	37
9	Loblolly pine (Pinus taeda L.) somatic embryogenesis: Improvements in embryogenic tissue initiation by supplementation of medium with organic acids, Vitamins B12 and E. Plant Science, 2006, 170, 648-658.	1.7	37
10	Somatic Embryogenesis in Loblolly Pine (Pinus Taeda L.). Forestry Sciences, 1995, , 287-301.	0.4	36
11	Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas fir (Pseudotsuga menziesii): improving culture initiation and growth with MES pH buffer, biotin, and folic acid. Plant Cell, Tissue and Organ Culture, 2005, 80, 91-103.	1.2	36
12	Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents. Tree Physiology, 2015, 35, 209-224.	1.4	36
13	Loblolly pine (Pinus taeda L.): stage-specific elemental analyses of zygotic embryo and female gametophyte tissue. Plant Science, 2003, 164, 943-954.	1.7	34
14	Douglas fir embryogenic tissue initiation. Plant Cell, Tissue and Organ Culture, 2009, 96, 75-84.	1.2	34
15	Gibberellin inhibitors improve embryogenic tissue initiation in conifers. Plant Cell Reports, 2005, 23, 596-605.	2.8	33
16	Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiology, 2008, 28, 985-996.	1.4	30
17	Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Reports, 2007, 26, 133-143.	2.8	29
18	Fraser fir somatic embryogenesis: high frequency initiation, maintenance, embryo development, germination and cryopreservation. New Forests, 2016, 47, 453-480.	0.7	29

GERALD S PULLMAN

#	Article	IF	CITATIONS
19	Natural and Somatic Embryo Development in Loblolly Pine: Gene Expression Studies Using Differential Display and DNA Arrays. Applied Biochemistry and Biotechnology, 1999, 77, 5-18.	1.4	25
20	Pine Somatic Embryogenesis Using Zygotic Embryos as Explants. Methods in Molecular Biology, 2011, 710, 267-291.	0.4	23
21	Conifer embryogenic tissue initiation: improvements by supplementation of medium with D-xylose and D-chiro-inositol. Tree Physiology, 2008, 29, 147-156.	1.4	22
22	Achieving desired plant growth regulator levels in liquid plant tissue culture media that include activated carbon. Plant Cell Reports, 2005, 24, 201-208.	2.8	16
23	Age- and position-of-origin and rootstock effects in Douglas-fir plantlet growth and plagiotropism. Plant Cell, Tissue and Organ Culture, 1992, 29, 179-186.	1.2	14
24	Identification and quantitative analysis of stage-specific organic acids in loblolly pine (Pinus taeda L.) zygotic embryo and female gametophyte. Plant Science, 2006, 170, 634-647.	1.7	13
25	Isolation and characterization of a molecule stimulatory to growth of somatic embryos from early stage female gametophyte tissue of loblolly pine. Plant Cell Reports, 2008, 27, 633-646.	2.8	13
26	Osmotic measurements in whole megagametophytes and embryos of loblolly pine (Pinus taeda) during seed development. Tree Physiology, 2009, 29, 819-827.	1.4	13
27	Modeling available 2,4-dichlorophenoxyacetic acid in a tissue culture medium containing activated carbon. Plant Cell, Tissue and Organ Culture, 2005, 82, 179-188.	1.2	10
28	Loblolly pine (Pinus taeda) female gametophyte and embryo pH changes during seed development. Tree Physiology, 2009, 29, 829-836.	1.4	9
29	Cermination In Vitro, Micropropagation, and Cryogenic Storage for Three Rare Pitcher Plants: Sarracenia oreophila (Kearney) Wherry (Federally Endangered), S. leucophylla Raf., and S. purpurea spp. venosa (Raf.) Wherry. Hortscience: A Publication of the American Society for Hortcultural Science. 2012, 47, 74-80.	0.5	9
30	Establishment of juvenile-like shoot cultures and plantlets from 4?16 year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Plant Cell, Tissue and Organ Culture, 1992, 29, 187-198.	1.2	7
31	Embryogenic Tissue Initiation in Loblolly Pine (Pinus Taeda L.). Forestry Sciences, 2018, , 13-31.	0.4	6
32	Seed Cryopreservation, Germination, and Micropropagation of Eastern Turkeybeard, Xerophyllum asphodeloides (L.) Nutt.: A Threatened Species from the Southeastern United States. Plants, 2021, 10, 1462.	1.6	5
33	Gene Expression Differences Between Zygotic and Somatic Embryos Monitored by Differential Display and cDNA Array: A Potential Tool to Improve Loblolly Pine Somatic Embryo Quality. Current Plant Science and Biotechnology in Agriculture, 1999, , 81-84.	0.0	5
34	<i>Myo</i> â€inositol hexakisphosphate, isolated from female gametophyte tissue of loblolly pine, inhibits growth of earlyâ€stage somatic embryos. New Phytologist, 2012, 193, 313-326.	3.5	3
35	Fraser Fir (Abies fraseri [Pursh] Poir.). Forestry Sciences, 2018, , 33-47.	0.4	2
36	Seed Cryostorage and Micropropagation of Georgia Aster, Symphyotrichum georgianum (Alexander) Nesom: A Threatened Species from the Southeastern United States. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 750-755.	0.5	1