
Stefan Ehlers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11754796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nature Genetics, 2005, 37, 357-364.	9.4	451
2	Cutting Edge: Toll-Like Receptor (TLR)2- and TLR4-Mediated Pathogen Recognition in Resistance to Airborne Infection with <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2002, 169, 3480-3484.	0.4	411
3	Mycobacterium tuberculosis Prevents Inflammasome Activation. Cell Host and Microbe, 2008, 3, 224-232.	5.1	345
4	The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood, 2006, 108, 965-973.	0.6	333
5	The IL-27 Receptor Chain WSX-1 Differentially Regulates Antibacterial Immunity and Survival during Experimental Tuberculosis. Journal of Immunology, 2005, 174, 3534-3544.	0.4	263
6	The Granuloma in Tuberculosis: Dynamics of a Host–Pathogen Collusion. Frontiers in Immunology, 2012, 3, 411.	2.2	260
7	Location of Persisting Mycobacteria in a Guinea Pig Model of Tuberculosis Revealed by R207910. Antimicrobial Agents and Chemotherapy, 2007, 51, 3338-3345.	1.4	225
8	Early granuloma formation after aerosolMycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. European Journal of Immunology, 2003, 33, 2676-2686.	1.6	212
9	Tumor Necrosis Factor and Its Blockade in Granulomatous Infections: Differential Modes of Action of Infliximab and Etanercept?. Clinical Infectious Diseases, 2005, 41, S199-S203.	2.9	188
10	Containment of aerogenic <i>Mycobacterium tuberculosis</i> infection in mice does not require MyD88 adaptor function for TLR2, â€4 and â€9. European Journal of Immunology, 2008, 38, 680-694.	1.6	158
11	Wnt signaling in macrophages: Augmenting and inhibiting mycobacteria-induced inflammatory responses. European Journal of Cell Biology, 2011, 90, 553-559.	1.6	156
12	Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes. Infection and Immunity, 2006, 74, 4295-4309.	1.0	146
13	Tumor necrosis factor and granuloma biology: Explaining the differential infection risk of etanercept and infliximab. Seminars in Arthritis and Rheumatism, 2005, 34, 34-38.	1.6	141
14	Clade-Specific Virulence Patterns of Mycobacterium tuberculosis Complex Strains in Human Primary Macrophages and Aerogenically Infected Mice. MBio, 2013, 4, .	1.8	136
15	The Lymphotoxin Î ² Receptor Is Critically Involved in Controlling Infections with the Intracellular Pathogens <i>Mycobacterium tuberculosis</i> and <i>Listeria monocytogenes</i> . Journal of Immunology, 2003, 170, 5210-5218.	0.4	134
16	Autocrine IL-10 Induces Hallmarks of Alternative Activation in Macrophages and Suppresses Antituberculosis Effector Mechanisms without Compromising T Cell Immunity. Journal of Immunology, 2009, 183, 1301-1312.	0.4	130
17	Mycobacteria-Induced TNF-α and IL-10 Formation by Human Macrophages Is Differentially Regulated at the Level of Mitogen-Activated Protein Kinase Activity. Journal of Immunology, 2001, 167, 3339-3345.	0.4	123
18	Expression of the Nitric Oxide Synthase 2 Gene Is Not Essential for Early Control of Mycobacterium tuberculosis in the Murine Lung. Infection and Immunity, 2000, 68, 6879-6882.	1.0	120

#	Article	IF	CITATIONS
19	IFN-γ and NO in mycobacterial disease: new jobs for old hands. Trends in Microbiology, 2002, 10, 221-226.	3.5	120
20	Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming <i>Mycobacterium tuberculosis</i> â€infected macrophages. FASEB Journal, 2010, 24, 4599-4612.	0.2	119
21	Fatal Granuloma Necrosis without Exacerbated Mycobacterial Growth in Tumor Necrosis Factor Receptor p55 Gene-Deficient Mice Intravenously Infected with <i>Mycobacterium avium</i> . Infection and Immunity, 1999, 67, 3571-3579.	1.0	112
22	The <scp>IL</scp> â€13/ <scp>ILâ€4R</scp> <i>α</i> axis is involved in tuberculosisâ€associated pathology. Journal of Pathology, 2014, 234, 338-350.	2.1	102
23	αβ T Cell Receptor-positive Cells and Interferon-γ, but not Inducible Nitric Oxide Synthase, Are Critical for Granuloma Necrosis in a Mouse Model of Mycobacteria-induced Pulmonary Immunopathology. Journal of Experimental Medicine, 2001, 194, 1847-1859.	4.2	101
24	The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology (United Kingdom), 2004, 150, 853-864.	0.7	97
25	Lethal Granuloma Disintegration in Mycobacteria-Infected TNFRp55â^'/â^' Mice Is Dependent on T Cells and IL-12. Journal of Immunology, 2000, 165, 483-492.	0.4	90
26	Tertiary Structure of Bacterial Murein: the Scaffold Model. Journal of Bacteriology, 2003, 185, 3458-3468.	1.0	90
27	Inflammation and Lymphocyte Activation during Mycobacterial Infection in the Interferon-Î ³ -Deficient Mouse. Cellular Immunology, 2001, 211, 43-50.	1.4	87
28	Molecular mechanics of the mycobacterial cell wall: From horizontal layers to vertical scaffolds. International Journal of Medical Microbiology, 2000, 290, 251-258.	1.5	83
29	Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology, 2013, 218, 506-516.	0.8	82
30	Decreased Pathology and Prolonged Survival of Human DC-SIGN Transgenic Mice during Mycobacterial Infection. Journal of Immunology, 2008, 180, 6836-6845.	0.4	80
31	Mechanisms of granuioma formation in murine Mycobacterium avium infection: the contribution of CD4+ T cells. International Immunology, 1996, 8, 1299-1310.	1.8	77
32	Towards a comprehensive view of the bacterial cell wall. Trends in Microbiology, 2005, 13, 569-574.	3.5	75
33	A Novel Nonclassic β 2-Microglobulin–Restricted Mechanism Influencing Early Lymphocyte Accumulation and Subsequent Resistance to Tuberculosis in the Lung. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 188-193.	1.4	73
34	Variant G57E of Mannose Binding Lectin Associated with Protection against Tuberculosis Caused by Mycobacterium africanum but not by M. tuberculosis. PLoS ONE, 2011, 6, e20908.	1.1	67
35	Wnt6 Is Expressed in Granulomatous Lesions of <i>Mycobacterium tuberculosis</i> –Infected Mice and Is Involved in Macrophage Differentiation and Proliferation. Journal of Immunology, 2013, 191, 5182-5195.	0.4	66
36	MyDths and un-TOLLed truths: Sensor, instructive and effector immunity to tuberculosis. Immunology Letters, 2008, 116, 15-23.	1.1	61

#	Article	IF	CITATIONS
37	Cluster Mannosides as Inhibitors of Type 1 Fimbriae-Mediated Adhesion ofEscherichia coli: Pentaerythritol Derivatives as Scaffolds. European Journal of Organic Chemistry, 2000, 2000, 2027-2034.	1.2	59
38	Control of Mycobacterial Replication in Human Macrophages: Roles of Extracellular Signal-Regulated Kinases 1 and 2 and p38 Mitogen-Activated Protein Kinase Pathways. Infection and Immunity, 2002, 70, 4961-4967.	1.0	59
39	Alternatively activated macrophages express the IL-27 receptor alpha chain WSX-1. Immunobiology, 2006, 211, 427-436.	0.8	58
40	DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison. European Journal of Cell Biology, 2010, 89, 95-101.	1.6	58
41	Common and Unique Gene Expression Signatures of Human Macrophages in Response to Four Strains of Mycobacterium avium That Differ in Their Growth and Persistence Characteristics. Infection and Immunity, 2005, 73, 3330-3341.	1.0	55
42	Resistance of Virulent <i>Mycobacterium avium</i> to Gamma Interferon-Mediated Antimicrobial Activity Suggests Additional Signals for Induction of Mycobacteriostasis. Infection and Immunity, 1999, 67, 3610-3618.	1.0	55
43	Layered murein revisited: a fundamentally new concept of bacterial cell wall structure, biogenesis and function. Medical Microbiology and Immunology, 1999, 187, 173-181.	2.6	53
44	Different types of pulmonary granuloma necrosis in immunocompetent vs. TNFRp55-gene-deficient mice aerogenically infected with highly virulentMycobacterium avium. , 1999, 189, 127-137.		52
45	Therapeutic targeting of interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology, 2012, 217, 996-1004.	0.8	52
46	Expression of the <i>ompATb</i> operon accelerates ammonia secretion and adaptation of <i>Mycobacterium tuberculosis</i> to acidic environments. Molecular Microbiology, 2011, 80, 900-918.	1.2	50
47	Why does tumor necrosis factor targeted therapy reactivate tuberculosis?. Journal of rheumatology Supplement, The, 2005, 74, 35-9.	2.2	47
48	Resistance and susceptibility to tuberculosis analysed at the transcriptome level: lessons from mouse macrophages. Tuberculosis, 2004, 84, 144-158.	0.8	46
49	NALP3 is not necessary for early protection against experimental tuberculosis. Immunobiology, 2010, 215, 804-811.	0.8	45
50	Mediator responses of alveolar macrophages and kinetics of mononuclear phagocyte subset recruitment during acute primary and secondary mycobacterial infections in the lungs of mice. Cellular Microbiology, 2007, 9, 738-752.	1.1	44
51	IL-22 Is Mainly Produced by IFNÎ ³ -Secreting Cells but Is Dispensable for Host Protection against Mycobacterium tuberculosis Infection. PLoS ONE, 2013, 8, e57379.	1.1	41
52	Multivalent ligands for the mannose-specific lectin on type 1 fimbriae of Escherichia coli : syntheses and testing of trivalent α-D-mannoside clusters. Journal of the Chemical Society Perkin Transactions 1, 1998, , 2193-2200.	0.9	38
53	Interleukin-15 mediates protection against experimental tuberculosis: A role for NKG2D-dependent effector mechanisms of CD8+ T cells. European Journal of Immunology, 2006, 36, 1156-1167.	1.6	38
54	Immunity to tuberculosis: a delicate balance between protection and pathology. FEMS Immunology and Medical Microbiology, 1999, 23, 149-158.	2.7	36

#	Article	lF	CITATIONS
55	Selectin Ligand-Independent Priming and Maintenance of T Cell Immunity during Airborne Tuberculosis. Journal of Immunology, 2006, 176, 1131-1140.	0.4	31
56	Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF. Infection and Immunity, 2015, 83, 3612-3623.	1.0	30
57	LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest. Microbiology (United Kingdom), 2008, 154, 2991-3001.	0.7	28
58	Lipidâ€Labeling Facilitates a Novel Magnetic Isolation Procedure to Characterize Pathogen ontaining Phagosomes. Traffic, 2013, 14, 321-336.	1.3	23
59	Complex Encounters at the Macrophage-Mycobacterium Interface: Studies on the Role of the Mannose Receptor and CD14 in Experimental Infection Models with Mycobacterium Avium. Immunobiology, 2001, 204, 558-571.	0.8	19
60	Mice That Overexpress CC Chemokine Ligand 2 in Their Lungs Show Increased Protective Immunity to Infection with <i>Mycobacterium bovis</i> Bacille Calmetteâ€Guérin. Journal of Infectious Diseases, 2008, 198, 1044-1054.	1.9	17
61	gp130 on macrophages/granulocytes modulates inflammation during experimental tuberculosis. European Journal of Cell Biology, 2011, 90, 505-514.	1.6	17
62	Mitogen-activated protein kinases p38 and ERK1/2 regulated control of <i>Mycobacterium avium</i> replication in primary murine macrophages is independent of tumor necrosis factor-α and interleukin-10. Innate Immunity, 2011, 17, 470-485.	1.1	17
63	Gamma Interferon Is Essential for Clearing Mycobacterium genavense Infection. Infection and Immunity, 2000, 68, 3720-3723.	1.0	16
64	Mycobacteriaâ€induced granuloma necrosis depends on IRFâ€1. Journal of Cellular and Molecular Medicine, 2009, 13, 2069-2082.	1.6	16
65	Commentary: Adaptive immunity in the absence of innate immune responses? The un-Tolled truth of the silent invaders. European Journal of Immunology, 2004, 34, 1783-1788.	1.6	15
66	Liposomal Amikacin for Treatment of M. avium Infections in Clinically Relevant Experimental Settings. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1996, 284, 218-231.	0.5	13
67	Characterization of a Mycobacterium tuberculosis mutant deficient in pH-sensing adenylate cyclase Rv1264. International Journal of Medical Microbiology, 2006, 296, 563-566.	1.5	13
68	A Mutation in <i>IL4RA</i> Is Associated with the Degree of Pathology in Human TB Patients. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	12
69	Suppressor of Cytokine Signaling 3 in Macrophages Prevents Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early Permissiveness to Experimental Tuberculosis. Frontiers in Immunology, 2017, 8, 1537.	2.2	12
70	DAP10 contributes to CD8+ T cell-mediated cytotoxic effector mechanisms during Mycobacterium tuberculosis infection. Immunobiology, 2011, 216, 639-647.	0.8	10
71	Mycobacterium avium infection in CD14-deficient mice fails to substantiate a significant role for CD14 in antimycobacterial protection or granulomatous inflammation. Immunology, 2001, 103, 113-121.	2.0	9
72	Interleukin-12p40 mediates transient protection against Mycobacterium avium infection in the absence of interleukin-12. Immunobiology, 2005, 210, 217-227.	0.8	7

#	Article	IF	CITATIONS
73	Mycobacterium Tuberculosis-Induced Cell Death of Primary Human Monocytes and Macrophages Is Not Significantly Modulated by Tumor Necrosis Factor-Targeted Biologicals. Journal of Investigative Dermatology Symposium Proceedings, 2007, 12, 26-33.	0.8	7
74	Fucosyltransferase IV and VII-directed selectin ligand function determines long-term survival in experimental tuberculosis. Immunobiology, 2009, 214, 674-682.	0.8	7
75	In vitro and in vivo characterization of a Mycobacterium tuberculosis mutant deficient in glycosyltransferase Rv1500. International Journal of Medical Microbiology, 2008, 298, 645-655.	1.5	5
76	TB or not TB? Fishing for Molecules Making Permissive Granulomas. Cell Host and Microbe, 2010, 7, 6-8.	5.1	5
77	Measuring Immune Responses In Vivo. Methods in Microbiology, 2010, 37, 227-269.	0.4	1
78	Measuring immune responses in vivo. Methods in Microbiology, 2002, 32, 403-431.	0.4	0