Kishorkumar V Khot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11752558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High performing smart electrochromic device based on honeycomb nanostructured h-WO ₃ thin films: hydrothermal assisted synthesis. Dalton Transactions, 2015, 44, 2788-2800.	3.3	69
2	Development of nanocoral-like Cd(SSe) thin films using an arrested precipitation technique and their application. New Journal of Chemistry, 2014, 38, 5964-5974.	2.8	62
3	Single step hydrothermal synthesis of hierarchical TiO ₂ microflowers with radially assembled nanorods for enhanced photovoltaic performance. RSC Advances, 2014, 4, 47278-47286.	3.6	40
4	Development of dye sensitized TiO2 thin films for efficient energy harvesting. Journal of Alloys and Compounds, 2019, 790, 1001-1013.	5.5	35
5	A facile and low cost strategy to synthesize Cd _{1â^'x} Zn _x Se thin films for photoelectrochemical performance: effect of zinc content. RSC Advances, 2015, 5, 55658-55668.	3.6	33
6	Effect of substrate on the nanostructured Bi2Se3 thin films for solar cell applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 2385-2393.	2.2	33
7	Efficient improvement of photoelectrochemical performance of CdSe thin film deposited via arrested precipitation technique. Materials Letters, 2016, 164, 52-55.	2.6	30
8	Simplistic construction of cadmium sulfoselenide thin films via a hybrid chemical process for enhanced photoelectrochemical performance. RSC Advances, 2015, 5, 40283-40296.	3.6	26
9	Novel-approach for fabrication of CdS thin films for photoelectrochemical solar cell application. Journal of Materials Science: Materials in Electronics, 2014, 25, 5606-5617.	2.2	22
10	Photocurrent enhancement in a Cu ₂ Cd(SSe) ₂ photoanode synthesized via an arrested precipitation route. New Journal of Chemistry, 2016, 40, 3277-3288.	2.8	21
11	Surfactant assisted approach to development of efficient WO3 photoanode for natural dye sensitized solar cell. Solar Energy, 2021, 220, 371-383.	6.1	21
12	Synthesis, characterization and photoelectrochemical properties of PbS sensitized vertically aligned ZnO nanorods: modified aqueous route. Journal of Materials Science: Materials in Electronics, 2015, 26, 6897-6906.	2.2	19
13	Enhanced photoelectrochemical performance of novel p-type MoBiCuSe ₄ thin films deposited by a simple surfactant-mediated solution route. RSC Advances, 2016, 6, 24985-24994.	3.6	19
14	Investigating the Role of Selenium-Ion Concentration on Optoelectronic Properties of the Cu ₂ ZnSn(S _{1–<i>x</i>} Se _{<i>x</i>}) ₄ Thin Films. Industrial & Engineering Chemistry Research, 2020, 59, 10868-10881.	3.7	19
15	Surfactant mediated synthesis of bismuth selenide thin films for photoelectrochemical solar cell applications. Journal of Colloid and Interface Science, 2018, 514, 250-261.	9.4	18
16	Novel route for the synthesis of surfactant-assisted MoBi ₂ (Se _{0.5} Te _{0.5}) ₅ thin films for solar cell applications. New Journal of Chemistry, 2015, 39, 3405-3416.	2.8	16
17	One-step hydrothermally assisted synthesis of CuZnSe thin film: photovoltaic application. Nanomaterials and Energy, 2020, 9, 1-7.	0.2	13
18	Facile hydrothermal assisted synthesis of time dependent Cu2S thin films for efficient photoelectrochemical application. Journal of Materials Science: Materials in Electronics, 2018, 29, 19322-19335.	2.2	12

#	Article	IF	CITATIONS
19	Deposition, characterizations and photoelectrochemical performance of nanocrystalline Cu–In–Cd–S–Se thin films by hybrid chemical process. Journal of Materials Science, 2017, 52, 9709-9727	. 3.7	11
20	Novel hydrothermal route for synthesis of photoactive Cu2ZnSn(S,Se)4 nanocrystalline thin film: efficient photovoltaic performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 5441-5451.	2.2	11
21	Enhancement in thermoelectric performance of Cu3SbSe4 thin films by In(III) doping; synthesized by arrested precipitation technique. Journal of Materials Science: Materials in Electronics, 2018, 29, 8793-8800.	2.2	10
22	Investigating the light harvesting capacity of sulfur ion concentration dependent SnS2 thin films synthesized by self-assembled arrested precipitation technique. Materials Research Express, 2019, 6, 086467.	1.6	9
23	Effect of indium(III) doping on chemosynthesized MoBi2Te5 thin films and it's photoresponse property. Journal of Materials Science: Materials in Electronics, 2015, 26, 2921-2930.	2.2	8
24	An approach towards TiO2 chrysanthemum flowers with tunable properties: influence of reaction time in hydrothermal process. Journal of Materials Science: Materials in Electronics, 2015, 26, 6119-6128.	2.2	7
25	Synthesis of (CdZn)Se thin films by a facile aqueous phase route and their photoelectrochemical performance for solar cell application. Journal of Materials Science: Materials in Electronics, 2016, 27, 5867-5877.	2.2	7
26	Novel synthetic route for the synthesis of ternary Cd(SSe) photoelectrode and their photoelectrochemical application. Journal of Materials Science: Materials in Electronics, 2017, 28, 2984-2995.	2.2	6
27	Synthesis of Bismuth Telluride Thin Film for Thermoelectric Application Via Electrodeposition Technique. Macromolecular Symposia, 2016, 361, 152-155.	0.7	5
28	Novel Approach for Invention of Nubbly-Like Cd(SSe) Thin Film: Photoelectrochemical Application. Macromolecular Symposia, 2016, 362, 82-86.	0.7	3
29	Rapid Formation of Ternary CdZnSe ₂ Chalcogenide Thin Film by Microwave Assisted Chemical Bath Deposition. Macromolecular Symposia, 2016, 362, 60-64.	0.7	3
30	Hydrothermally synthesized nanocrystalline photoactive SnS ₂ thin films: effect of surface directing agents. New Journal of Chemistry, 2022, 46, 3277-3287.	2.8	2
31	An efficient Cu ₂ Zn _{1â^²<i>x</i>} In _{<i>x</i>} Sn(S,Se) ₄ multicomponent photocathode <i>via</i> one-step hydrothermal approach for thin film solar cell. Journal of Materials Chemistry C, 2022, 10, 3447-3460.	5.5	2
32	Natural dye sensitized nanocomposite for efficient energy harvesting. AIP Conference Proceedings, 2018, , .	0.4	1